版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列,如果,是首项为1,公比为的等比数列,则=ABCD2角的终边与单位圆交于点,则( )AB-CD3由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为( )A11
2、6 B92 C14在等差数列中,则的前10项和为()A-80B-85C-88D-905求二项式展开式中第三项的系数是( )A-672B-280C84D426已知y与x及与的成对数据如下,且y关于x的回归直线方程为,则关于的回归直线方程为( )x12345y2345710203040502030405070ABCD7己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()ABCD8已知,则a,b,c的大小关系为ABCD9给出四个函数,分别满足;,又给出四个函数图象 正确的匹配方案是 ( )A. 丁 乙 丙 甲 B. 乙 丙 甲 丁C. 丙 甲 乙 丁 D. 丁 甲 乙 丙10某几何体的三视图
3、如图所示,则其体积为( )A80 B160 C240 D48011下列选项叙述错误的是 ( )A命题“若,则”的逆否命题是“若,则”B若命题,则C若为真命题,则,均为真命题D若命题为真命题,则的取值范围为12下列函数既是偶函数,又在上为减函数的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若从甲乙丙丁4位同学中选出3位同学参加某个活动,则甲被选中的概率为_14若函数为奇函数,则_.15随机变量的分布列如下:若,则_.16已知是方程的一个根,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正项数列中,且(1)分别计算出的值,然后猜想数列的
4、通项公式;(2)用数学归纳法证明你的猜想.18(12分)(1)用分析法证明:;(2)用反证法证明:三个数中,至少有一个大于或等于.19(12分)每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查,该调查机构从该校随机抽查了名不同性别的学生,现已得知人中喜爱阅读的学生占,统计情况如下表喜爱不喜爱合计男生女生合计(1)完成列联表,根据以上数据,能否有的把握认为是否喜爱阅读与被调查对象的性别有关?请说明理由:(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取位学生进行调查,求抽取的位学生中至少有人喜爱阅读的概率,(以下临界值及公式仅供参考)
5、,20(12分)如图,在ABC中,ABC90,AB,BC1,P为ABC内一点,BPC90.(1)若PB,求PA;(2)若APB150,求tanPBA21(12分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,分组的频率分布直方图如图所示根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市
6、所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望22(10分)已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:累加法求解。详解:,解得 点睛:形如的模型,求通项公式,用累加法。2、D【解析】根据三角函数的定义,求得,再由余弦的倍角公式,即可求解.【详解】由题意,角的终边与单位圆交于点,则,由三角函数的定义,可得,则,故选D.【点睛】本题主要考查了三角函数的定义,以及余弦的倍角公式的化简、求值,其中解答中熟记三角函数的定义,
7、以及余弦的倍角公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.3、C【解析】试题分析:由题意得,由xy=1和y=x,解得交点坐标为(1,1),所以围成的封闭图形的面积S=(1考点:定积分求解曲边形的面积4、A【解析】用待定系数法可求出通项,于是可求得前10项和.【详解】设的公差为,则,所以,前10项和为.【点睛】本题主要考查等差数列的通项公式,求和公式,比较基础.5、C【解析】直接利用二项式定理计算得到答案.【详解】二项式展开式的通项为:,取,则第三项的系数为.故选:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.6、D【解析】先由题意求出与,根据回归直线过
8、样本中心,即可得出结果.【详解】由题意可得:,因为回归直线方程过样本中心,根据题中选项,所以关于的回归直线方程为.故选D【点睛】本题主要考查回归直线方程,熟记回归直线方程的意义即可,属于常考题型.7、D【解析】利用弧长公式列出方程直接求解,即可得到答案【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题8、D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数
9、的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确9、D【解析】四个函数图象,分别对应甲指数函数,乙对数函数,丙幂函数,丁正比例函数;而满足是正比例函数;是指数函数;是对数函数;是幂函数,所以匹配方案是丁 甲 乙 丙,选D。10、B【解析】由三视图可知,该几何体是由一个三棱柱截去一个三棱锥得到的,三棱柱的底面是直角三角形,两直角边边长为6 和8 ,三棱柱的高为10 ,三棱锥的
10、底面是直角三角形,两直角边为6 和8 ,三棱锥的高为10,所以几何体的体积V=111、C【解析】分析:根据四种命题的关系进行判断A、B,根据或命题的真值表进行判断C,由全称命题为真的条件求D中参数的值详解:命题“若,则”的逆否命题是“若,则”,A正确;若命题,则,B正确; 若为真命题,则,只要有一个为真,C错误;若命题为真命题,则,D正确故选C点睛:判断命题真假只能对每一个命题进行判断,直到选出需要的结论为止命题考查四种命题的关系,考查含逻辑连接词的命题的真假以及全称命题为真时求参数的取值范围,掌握相应的概念是解题基础12、B【解析】通过对每一个选项进行判断得出答案.【详解】对于选项:函数在既
11、不是偶函数也不是减函数,故排除;对于选项:函数既是偶函数,又在是减函数;对于选项:函数在是奇函数且增函数,故排除;对于选项:函数在是偶函数且增函数,故排除;故选:B【点睛】本题考查了函数的增减性以及奇偶性的判断,属于较易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先确定4位同学中选出3位同学事件数,再确定甲被选中事件数,最后根据古典概型概率公式求结果.详解:因为4位同学中选出3位同学共有种,甲被选中事件数有,所以甲被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”
12、区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.14、【解析】根据函数奇偶性的定义和性质建立方程求出a的值,再将1代入即可求解【详解】函数为奇函数,f(x)f(x),即f(x),(2x1)(x+a)(2x+1)(xa),即2x2+(2a1)xa2x2(2a1)xa,2a10,解得a故故答案为【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键15、【解析】利用概率之和为以及数学期望列方程组解出和的值,最后利用方差的计算公式可
13、求出的值。【详解】由题意可得,解得,因此,故答案为:。【点睛】本题考查随机分布列的性质以及随机变量的数学期望和方差的计算,解题时要注意概率之和为这个隐含条件,其次就是熟悉随机变量数学期望和方差的公式,考查计算能力,属于中等题。16、14【解析】利用实系数的一元二次方程的虚根成对原理即可求出。【详解】是关于方程的一个根,也是关于方程的一个根,解得,故答案为:14【点睛】本题考查一元二次方程的虚根成对原理、韦达定理,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)逐个计算计算出的值,再通过观察可猜。(2)先检验n=1满足,再假设时
14、(*)式成立,即,下证即可证明。【详解】(1) 令得化简得,解得或 . 令得化简得,解得或 令得化简得,解得或 猜想(*).当时,(*)式成立; 假设时(*)式成立,即,那么当时, 化简得 所以当时,(*)式也成立. 综上:由得当时,【点睛】本题考查归纳-猜想-证明,这一常见思维方式,而与自然数相关的结论证明我们常用数学归纳法。18、 (1)证明见解析;(2)证明见解析.【解析】试题分析:(1)结合不等式的特征,两边平方,用分析法证明不等式即可;(2)利用反证法,假设这三个数没有一个大于或等于,然后结合题意找到矛盾即可证得题中的结论.试题解析:(1)因为和都是正数,所以要证,只要证,展开得,只
15、要证,只要证,因为成立,所以成立.(2)假设这三个数没有一个大于或等于,即,上面不等式相加得 (*)而,这与(*)式矛盾,所以假设不成立,即原命题成立.点睛:一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻找使结论成立的充分条件;二是应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法所谓矛盾主要指:与已知条件矛盾;与假设矛盾;与定义、公理、定理矛盾;与公认的简单事实矛盾;自相矛盾.19、 (1)见解析;(2) 【解析】(1)补全列联表,计算,与临界值表对比得到
16、答案.(2)喜爱阅读的人数为随机变量,将2人喜欢阅读,3人喜欢阅读概率相加得到答案.【详解】解:列联表如表喜爱不喜爱合计男生女生合计由表可知因为,所以有的把握认为是否喜爱阅读与被调查对象的性别有关.(2)设人中喜爱阅读的人数为随机变量,由题可知所以人中至少有人喜爱阅读的概率为所以【点睛】本题考查了列联表,概率的计算,意在考查学生的应用能力.20、(1)(2)【解析】试题分析:(1)在三角形中,两边和一角知道,该三角形是确定的,其解是唯一的,利用余弦定理求第三边.(2)利用同角三角函数的基本关系求角的正切值.(3)若是已知两边和一边的对角,该三角形具有不唯一性,通常根据大边对大角进行判断.(4)
17、在三角兴中,注意这个隐含条件的使用.试题解析:解:(1)由已知得PBC60,所以PBA30.在PBA中,由余弦定理得PA2.故PA. 5分(2)设PBA,由已知得PBsin .在PBA中,由正弦定理得,化简得cos 4sin .所以tan ,即tanPBA. 12分考点:(1)在三角形中正余弦定理的应用.(2)求角的三角函数.21、 (1)225.6.(2) (i) ;(ii) 分布列见解析;.【解析】分析:(1)由矩形面积和为列方程可得,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市每户居民平均用电量的值;(2) (i)由正态分布的对称性可得结果;(ii)因为,则,从而可得分布列,利用二项分布的期望公式可得结果.详解:(1)由得(2)(i)(ii)因为,.所以的分布列为0123所以点睛:“求期望”,一般利用离散型随机变量的数学期望的定义求期望对于某些实际问题中的随机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人股份转让协议书(法律服务)4篇
- 2025年水路货物运输规则运输网络布局优化合同3篇
- 2025年度空地租赁及土地开发合同
- 二零二五年餐饮企业食堂承包与可持续发展协议3篇
- 二零二五年民办体育俱乐部教练员聘任书4篇
- 二零二五年度窗帘窗帘杆安装维修合同4篇
- 2025年度大宗货物物流供应链金融服务承包合同范本2篇
- 二零二五年度企业员工国内出差费用结算合同范本3篇
- 二零二五年度跨国数据中心运营合同3篇
- 2025年度面粉行业二零二五年度面粉产品追溯体系共建合同4篇
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 西方经济学-高鸿业-笔记
- 2024年上海市中考语文试题卷(含答案)
- 幼儿园美术教育研究策略国内外
- 生猪养殖生产过程信息化与数字化管理
- (完整)六年级数学上册寒假每天10道计算题5道应用题
- (2024年)版ISO9001质量管理体系培训教材
评论
0/150
提交评论