气象学与气候学重点_第1页
气象学与气候学重点_第2页
气象学与气候学重点_第3页
气象学与气候学重点_第4页
气象学与气候学重点_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业一气候系统概念:P7 气候系统是一个包括大气圈、水圈、陆地表面、冰雪圈和生物圈在内的,能够决定气候形成、气候分布和气候变化的统一的物理系统。气候系统的五大子系统:大气圈、水圈、陆地表面、冰雪圈和生物圈臭氧的形成与分布 P9臭氧层是指的中浓度相对较高的部分,其主要作用是吸收短波。主要由于在太阳短波辐射下,通过光化学作用,氧分子分解为氧原子后再和另外的氧分子结合而形成的。有机物的氧化和雷雨闪电的作用也能形成臭氧。分布:大气中的臭氧随高度、纬度等不同而变化,近地面含量极少。它

2、是在太阳紫外线辐射或闪电作用下,氧分子分解为氧原子后再和另外的氧分子结合而成的气体。据观测,臭氧含量随高度的分布很不规则,近地面含量很少,从10km高度开始含量逐渐增加,12-15KM以上含量增加得特别显著,在20-30km高度处达最大值,再往上,含量又逐渐减少,到55km高度就极少了。造成这一现象的原因是由于在大气的上层中,太阳短波强度很大,使氧分子解离增多。因此,氧原子与氧分子相遇机会很少;即使臭氧在此处形成由于它吸收一定波长的紫外线,又引起自身分解,因此,在大气上层臭氧的含量不多。到20-30km处,既有足够的氧分子,又有足够的氧原子,这给臭氧的形成提供了条件,故称这一层为臭氧层。在低于

3、这一层的空气中,太阳短波紫外线大大减少,臭氧分解也减弱,所以氧原子数量减少,以致臭氧形成减少。作用:臭氧能大量地吸收太阳紫外线,使臭氧层增暖,影响大气温度的垂直分布,从而对地球大气环流和气候的影响起着重要作用。同时,还对地面上的生物起着保护作用,使之免遭紫外线的伤害,少量紫外线可以起到杀菌治病的作用。P10对流层(地面对流层顶)对流层是大气的最下层,它的下界为地面,集中3/4大气,90%水汽,日常所见的大气现象均发生在此层,也是对人类生活、产生最有影响的层次。对流层有三个特点:气温随着高度而降低:由于本层的直接热源是地面,愈近地面大气获得热能愈多,温度愈加高,其气温直减率主-0.65/100m

4、。对流运动显著:对流的强度主要随纬度和季节的变化而不同由于下垫面起伏较大,海陆分布不同,大气受热不均,暖的地上升,冷的地方下沉,引起对流。对流层的上界因纬度和季节不同而异,就纬度而言,低纬度:对流强,对流层较厚,平均厚度为17-18km,中纬度:夏季对流强,冬季对流较弱,平均厚度10-20km 主要受地表影响大高纬度:全年受到的太阳辐射最小,对流也最弱,对流层的厚度只有8-9km。气象要素水平分布不均匀:温度和湿度不同 由于对流层受地表的影响最大,而地表面性质不同,使对流层中,温度、湿度气压、能见度、风速等的水平分布是不均匀的。例如:陆地上的湿度比海洋上要小得多,白天陆地上的温度要比海洋上高得

5、多。 在对流层内,按气流和天气现象分布特点又可分为三层。下层:又称行星边界层或摩擦层或扰动层。它的范围自地面到2km高度。下层受地面强烈影响摩擦作用、湍流交换十分明显,各气象要素具有明显的日变化(使大气浑浊度增大)。由于本层的水汽、尘粒含量多,因而低云、雾、霾、浮尘等出现频繁。 中层:从摩擦层顶到6km左右高度。这一层受地表影响较小,气流的状况基本上可以表征整个对流层空气运动的趋势。大气中的云和降水现象大都产生在这一层。上层:从6km高度到对流层顶。由于这一层离地面更远,受地表影响更小,水汽含量极少,气温常在0以下,各种云多由冰晶和过冷水滴组成。在中、低纬度地区上层,常有风速30m/s的强风带

6、出现。 此外,在对流层和平流层之间有一个厚度为数百米至1-2km的过渡层,称为对流层顶。此层主要特征是:气温随高度增加变化很小,甚至无变化。这种温度的垂直分布抑制了对流作用的发展,上升的水汽、尘粒多聚集其下,能见度变坏。对流层顶的温度在低纬度地区平均为-83,在高纬度地区约为-53。为什么在对流层顶,低纬的温度低于高纬的?参考:对流层顶,低纬的温度低天于高纬,是因为:(1) 在对流层顶,温度的平均分布取决于辐射、湍流对流交换过程,对流层顶附近的温度与对流层顶的高度有密切的关系;(2) 对流层顶愈高,温度随高递减的层次就愈厚,对流层顶的温度也就愈低;(3) 低纬地区对流旺盛,对流层顶高度为18-

7、19KM,而高纬地区对流层顶只有9-10KM, 故对流顶,低纬温度低于高纬。相对湿度(f):空气中实际水汽与同温度下饱和水汽压百分比。 意义:相对湿度直接反映了空气距离饱和的程度。相对湿度越大,越接近饱和,当达到100%时,空气就达饱和状态,此时水汽就要开始凝结。露点(Td):当空气中水汽含量不变且气压一定时,降低温度,使未饱和空气达饱和时具有的温度,称之露点。空气状态方程: 空气状态有气压、密度、体积、绝对温度来表示。(一)理想气体状态方程: PV/T=R(常量) 在通常大气和压强条件下未饱和湿空气和干空气都十分接近理想气体 当空气质量为Mg时, PV=(M/)R*T P=M/VR*/T P

8、=RT 其中R*/=R比气体常数(二)干空气状态方程: 干空气d=28.96代入R*/d=Rd 则P=RdT(三)湿空气状态方程 P=RdT(1+0.378e/p)二有关辐射的基本定律 辐射:自然界中的一切物体都以电磁波的方式向四周放射能量的方式称为辐射。通过辐射传播的能量称为辐射能,也简称为辐射斯蒂芬随这温度的升高,黑体对各波长的放射能力都相应地增强。根据研究,黑体总的放射能力与它本身的绝对温度的四次方成正比波耳兹曼定律黑体的辐射能力与其表面的绝对温度的四次方成正比,表达式为:E=T4(二)维恩位移定律:黑体的单色辐射强度极大值所对应的波长是随温度的升高而逐渐向波长较短的方向移动的。根据研究

9、,黑体的单色辐射强度极大值所对应的波长与其绝对温度成反比。黑体辐射能力最大值所对应的波长与其表面绝对温度成反比,表达式为:max=C/T。上式称维恩位移定律,如果波长以微米为单位,C=2896m*K上式表明,物体的温度越高,其单色辐射极大值所对应的波长越短;反之,物体的温度越低,其辐射的波长则越长。(三)基尔霍夫定律:研究黑体与灰体的关系当热量平衡(即温度不变)时,物体对于某一波长的辐射能力与物体对该波长吸收率之比为一恒量。该定律指出,辐射能力强的物体,吸收能力也强,反映了辐射能力和吸收率的关系。表明(1)在一定波长、一定温度下,一个物体的吸收率等于该物体同温度、同波长的放射率。黑体吸收能力最

10、强,因此也是最好的放射体。(2)同一物体在温度T时它放射某一波长的辐射。那么,在同一温度下也吸收这一波长的辐射。太阳辐射在大气中的减弱分子散射:条件:太阳辐射遇到直径比波长小的空气分子特点:有选择性;质点散射对于其光学特性来说是对称的球形。粗粒散射:条件:太阳辐射遇到直径比波长大的空气分子特点:无选择性;质点散射对于其光学特性来说是不对称的,且散射质点越大偏对称程度越大(一)大气对太阳辐射的吸收:大气吸收作用太阳辐射穿过大气层时,大气成分中的水汽、氧、臭氧、二氧化碳及固体杂质等物质有选择吸收一定波长辐射能的特性,致使到达地面的太阳辐射能量被减弱,光谱发生改变。(二)大气对太阳的散射概念:太阳辐

11、射通过大气时,遇到大气的各种质点,太阳辐射能的一部分则以电磁波的形式从这些质点向四面八方传播开,这种现象称为大气的散射。分类:根据散射质点的直径和入射辐射的波长之间的大小关系分子散射:若散射质点的直径小于入射辐射的波长,此时的散射有选择性。粗粒散射:若散射质点的直径比入射辐射的波长大得多,此时的散射无选择性。(三)大气的云层和尘埃对太阳辐射的反射:大气中云层和较大颗粒的尘埃能将太阳辐射中一部分能量反射到宇宙空间去。其中云的反射作用最为显著,太阳辐射遇到云时被反射一部分或大部分。上述三种方式中,反射作用最重要,尤其是云层对太阳辐射的反射最为明显,另外还包括大气散射回宇宙以及地面反射回宇宙的部分;

12、散射作用次之,形成了到达地面的散射辐射;吸收作用相对最小。以全球平均而言,太阳辐射约有30被散射和漫射回宇宙,称之为行星反射率,20被大气和云层直接吸收,50到达地面被吸收。大气辐射概念:大气主要吸收地面辐射,同时按其本身的温度放出辐射,称大气辐射。大气逆辐射:大气辐射指向地面的部分称。大气逆辐射使地面因放射辐射而消耗的能量得到一定的补偿,由此可看出大气对地面有一种保温作用。地面有效辐射概念:地面放射的辐射(Eg)与地面吸收的大气逆辐射(Ea)之差,以F0 表示,则F0=Eg-Ea影响地面有效辐射的因子有:地面温度,空气温度,空气温度和云况有效辐射小的情况: 湿热条件下,有云覆盖,空气浑浊度大

13、,夜间有风,有逆温,平滑地面,植物覆盖。有效辐射大的情况: 海拔高度高,近地层气温随高度显著降低。海陆增温和冷却的差异及其原因差异:大陆受热快,冷却也快,温度升降变化大。而海洋上则温度变化缓慢。如大洋中,年最高及最低气温的出现要比大陆延迟一两个月。原因:二者对太阳辐射的吸收和反射不同在同样的太阳辐射强度之下,海洋所吸收的太阳能多于陆地所吸收的太阳能,这是因为陆面对太阳光的反射率大于水面。平均而论,陆面和水面的反射率之差约为10 20。换句话说,同样条件下的水面吸收的太阳能比陆面吸收的太阳能多1020。能量分布的厚度不同陆地所吸收的太阳能分布在很薄的表面上,而海水所吸收的太阳能分布在较厚的层次。

14、这是因为陆地表面的岩石和土壤对于各种波长的太阳辐射都是不透明的,而水除了对红色光线和红外线可以说是不透明的外,对于紫外线和波长较短的可见光线来说,却是相当透明的。二者的导热方式不同。陆地所得太阳能主要依靠传导向地下传播,而水还有其他更有效的方式,包括波浪、洋流和对流作用。这些作用使得水的热能发生垂直的和水平的交换。因此,陆面所得太阳辐射集中于表面,一薄层,以致表面急剧增温,也就加强了陆面和大气之间的显热交换;反之,水面所得太阳辐射分布在较厚的一个层次,以致水温不易增高,也就相对地减弱了水面和大气之间的显热交换。砂所得的太阳辐射,传给空气的约占半数,而水所得的太阳辐射,传给空气的不过0.5。水汽

15、含量不同海面有充分水源供应,以致蒸发量较大,失热较多,也使得水温不容易升高。而且,空气因水分蒸发而有较多的水汽,以致空气本身有较大的吸收地面辐射的能力,也就使得气温不易降低。陆地上的情况则正好相反。岩石和土壤的比热小于水的比热。气温的绝热变化绝热过程:大气中所进行的各种过程,通常伴有不同形式的能量转换。在能量转换过程中,空气的状态要发生改变。在气象学上,任一气块与外界之间无热量交换时的状态变化过程,叫做绝热过程。当某一气团在与外界没有任何热量交换的情况下,做上升运动,如果该气团体积不变上升到某一处,则其内部的压强会比周围大气的要高,气团为了与外界大气相平衡,气块体积要膨胀,在膨胀的过程中克服外

16、界压力而做功,气团做功所消耗的能量取自气团内部,因此使气块温度降低,以上过程称为气温的绝热冷却。 反之,气团作下沉运动时,若与外界没有热量交换的情况下,由于外界气压比起团内部气压高,会压缩气块使气团体积缩小,同时气团内气体被压缩做功,内能增加,温度上升,这种现象称为绝热增温。干绝热过程:1、概念:将升、降气块内部既没有发生水相变化,又没有与外界交换热量的过程,称作干绝热过程。研究中,大气的垂直运动过程可近似看作是绝热的。2、干绝热方程(亦称泊松方程):T/T0=(P/PO)0.286从方程中可以看出,在干绝热过程中气块温度的变化唯一决定于气,压的变化,当气压降低时,温度也降低,反之亦然。3、干

17、绝热直减率:气块绝热上升单位距离时的温度降低值,称绝热直减率。对于干空气和未饱和湿空气来说,则称干绝热直减率。以rd表示,实际工作中取其值为1.0/100m。注意:rd与r的含义是完全不同的。rd是干空气在绝热上升过程中气块本身的降温率,它近似于常数,而r是表示周围大气的气温随高度的分布情况。r可以有不同数值,即可大于、小于或者等于rd。湿绝热过程1、概念:饱和湿空气在上升过程中,与外界没有热量交换,该过程称为湿绝热过程。2、湿绝热直减率:饱和湿空气绝热上升的减温率,称为湿绝热直减率,以rm表示。其不是常数,但rm总小于rd。原因如下:因在湿绝热过程中,气块上升冷却引起凝结,释放潜热,对气块的

18、降温有补偿作用,而气块在下沉增热时,空气块中携带的云滴蒸发,由于蒸发耗热,下沉时的增温也比干绝热增温少,故rm总小于rd。大气稳定度:指气块受任意方向扰动后,返回或远离平衡位置的趋势和程度判断大气稳定度的基本方法大气是否稳定,通常用周围空气的温度直减率()与上升空气块的干绝热直减率(d)或湿绝热直减率(m)的对比来判断。考虑干绝热的情况:当干空气或未饱和的空气块上升Z高度时,其温度为Ti=Tio-dZ;而周围的空气温度为T=T0-Z。因为起始温度相等,即Ti0=T0,以此代入(259)式,则得(rrd)的符号,决定了加速度a与扰动位移Z的方向是否一致,亦即决定了大气是否稳定。当rrd,若Z0,

19、则a0,加速度与位移方向相反,层结是稳定的;当rrd,若Z0,则a0,加速度与位移方向一致,层结是不稳定的;当r=rd,a=0,层结是中性的。气温的水平分布 气温的分布通常用等温线图表示。所谓等温线就是通过地面上气温相等各地的连线。等温线的不同排列表示不同的气温分布特点,如等温线稀疏,则各地气温相差不大;等温线密集,表示各地气温悬殊;等温线平直,表示影响气温分布的因素较少;等温线的弯曲,表示影响气温分布的因素较多;等温线的东西方向,表示温度因纬度而不同,即以纬度为主要因素;等温线和海岸平行,表示气温因距海远近而不同,即以距海远近为主要因素等等影响气温分布的主要因素:纬度、海陆和高度对流层中气温

20、的垂直分布 辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。 图2-33中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地面愈近,降温愈多;离地面愈远,降温愈少,因而形成了自地面开始的逆温(图233b);随着地面辐射冷却的加剧,逆温逐渐向上扩展,黎明时达最强(图233中c);日出后,太阳辐射逐渐增强,地面很快增温,逆温便逐渐自下而上地消失(图233中d、e)。 湍流逆温 由于低层空气的湍流混合而形成的逆温,称为湍流逆温。其形成过程可用下图说明。图2-34中AB为气层原来的气温分布

21、,气温直减率(y)比干绝热直减率 (yd)小,经过湍流混合以后,气层的温度分布将逐渐接近于干绝热直减率。这是因为湍流运动中,上升空气的温度是按于绝热直减率变化的,空气升到混合层上部时,它的温度比周围的空气温度低,混合的结果,使上层空气降温;空气下沉时,情况相反,会使下层空气增温。所以,空气经过充分的湍流混合以.后,气层的温度直减率就逐渐趋近干绝热直减率。图中CD是经过湍流混合后的气温分布。这样,在湍流减弱层(湍流混合层与未发生湍流的上层空气之间的过渡层)就出现了逆温层DE平流逆温:暖空气平流到冷的地面或冷的水面上,会发生接触冷却的作用,愈近地表面降温愈多;而上层空气受冷地表面的影响小,降温较少

22、,于是产生逆温现象。这种因空气的平流而产生的逆温,称平流逆温(图)。 但是平流逆温的形成仍和湍流及辐射作用不能分开。因为既是平流,就具有一定风速,这就产生了空气的湍流,较强的湍流作用常使平流逆温的近地面部分遭到破坏,使逆温层不能与地面相联,而且湍流的垂直混合作用使逆温层底部气温降得更低,逆温也愈加明显。下沉逆温:如图2-36所示,当某一层空气发生下沉运动时,因气压逐渐增大,以及因气层向水平方向的辐散,使其厚度减小(hh)。如果气层下沉过程是绝热的,而且气层内各部分空气的相对位置不发生改变,这样空气层顶部下沉的距离要比底部下沉的距离为大,所以,其顶部空气的绝热增温要比底部多。于是可能有这样的情况

23、,当下沉到某一高度上,空气层顶部的温度高于底部的温度,而形成逆温。锋面逆温:对流层中,冷暖空气相遇,暖空气密度小,爬到冷空气的上面,两者之间形成一个倾斜的过渡区锋面。在锋面上,如果冷暖空气的温度差比较显著,也可出现逆温,这种逆温称为锋面逆温,如图237所示,右边是锋的剖面,上面绘有等温线;左边是A点上空气温垂直分布的情形。 由于锋是从地面向冷气团上方倾斜的,因此锋面逆温只能在冷气团所控制的地区内观测到。而且,锋面逆温的高度与观测点相对于地面锋线的位置有关,观测点距地面锋线愈近,逆温高度愈低。三水相变化:自然界中的某些物质可以气态、液态和固态的形式存在,按照系统论的观点,每一个状态成为一个相,水

24、的三种状态被称为水的三相。水的三相之间可以相互转化,但这种转化是有条件的。 物质从气态转变为液态的必要条件之一就是温度必须低于它本身的临界温度(在临界温度之上,采取任何方式都不会使气态变为液态)。水的临界温度tk=374。大气中的水汽基本集中在对流层和平流层内,该处大气的温度不但永远低于水汽的临界温度,而且还常低于水的冻结温度,因此水汽是大气中唯一能由一种相转变为另一种相的成分水相变化的判据:以水分子数:设N为单位时间内跑出水面的水分子数,n为落回水中的水分子数。Nn 蒸发(未饱和) Ne蒸发(未饱和)Ee升华 Ese凝华Es=e动态平衡动态平衡与水汽压由于水分子不断的跑出和落回,如果继续下去

25、,就有可能在同一时间内,跑出水面的水分子与落回水面的水分子恰好相等,这时水和水汽之间就达到两相平衡,这种平衡叫动态平衡。动态平衡时的水汽压称为饱和水汽压。在云中,冰晶和过冷却水共存的情况是很普遍的,如果当时的实际水汽压介于两者饱和水汽压之间,就会产生冰水之间的水汽转移现象。水滴会因不断蒸发而缩小,冰晶会因不断凝华而增大。这就是“冰晶效应”,该效应对降水的形成具有重要意义。溶液面的饱和水汽压自然界中的不少物质可容于水所以天然水通常是含有溶质的溶液。溶液中溶质的存在使溶液内分子间的作用力大于纯水内分子间的作用力,使水分子脱离溶液面比脱离纯水面困难。因此,同一温度下,溶液面的饱和水汽压比纯水面要小(

26、E溶E平E凹大气中水汽凝结的条件水汽由气态变为液态的过程称为凝结。水汽直接转变为固态的过程称凝华。大气中水汽凝结或凝华的一般条件是:一是有凝结核或凝华核的存在。二是大气中水汽要达到饱和或过饱和状态。(1)凝结核大气中能促使水汽凝结的微粒称为凝结核。大气中存在着大量湿性微粒物质,他们比水汽分子大的多,对水分子吸引力也大,从而有利于水汽分子在其表面的凝结,使其成为水汽凝结核心。(2)空气中水汽的饱和或过饱和一是通过蒸发,增加空气中的水汽,使水汽压大于饱和水汽压;二是通过冷去作用,减少饱和水汽压,使其小于当时的实际水汽压。暖水面蒸发空气的冷却绝热冷却 2.辐射冷却 3平流冷却 4混合冷却空气中水汽的

27、饱和或过饱和1.暖水面蒸发-增加大气中水的含量2.空气的冷却降温T降-E变大减小饱和水汽压主要靠空气冷却。大气的冷却方式主要有如下三种:(1)绝热冷却:指空气在上升过程中,因体积膨胀对外做功而导致空气本身的冷却。随着高度升高,温度降低,饱和水汽压减小,空气至一定高度就会出现过饱和状态。这一方式对于云的形成具有重要作用。(2)辐射冷却:指在晴朗无风的夜间,由于地面的辐射冷却,导致近地面层空气的降温。当空气中温度降低到露点温度以下时,水汽压就会超过饱和水汽压产生凝结。辐射雾就是水汽以这种方式凝结形成的。(3)平流冷却:暖湿空气流经冷的下垫面时,将热量传递给冷的地表,造成空气本身温度降低。如果暖空气

28、与冷地面温度相差较大,暖空气降温较多,也可能产生凝结。(4)混合冷却:当温差较大,且接近饱和的两团空气水平混合后,也可能产生凝结。在上述几种过程中,冷却通常是主要的。对形成雾来说,由于凝结出现在贴近地面的气层中,因此辐射冷却、平流冷却是主要的;对形成云来说,由于凝结是在一定高度上,因而绝热冷却就成为主要的了。由此可见,即使总辐射的强度一样,不同性质的地表真正得到的太阳辐射,仍有很大差异,这也是导致地表温度分布不均匀的重要原因之一。影响饱和水汽压的因素:蒸发面的温度,性质,形状A. 蒸发面的温度:饱和水汽压随温度升高而增大,饱和水汽压按数规律增大且随温度的改变量在高温时比低温时大指。因为蒸发面温

29、度升高时,水分子平均动能增大,单位时间内脱出水面的分子增多,落回水面的分子数才和脱出水面的分子相等。B. 蒸发面的性质:对于冰面和过冷却水面,饱和水汽压仍然是按指数规律递减。所不同的是冰是固体,冰分子要脱出冰面的束缚要比水分子脱出水面的束缚要困难。C蒸发面的形状:温度相同时,凸面的饱和水汽压最大,平面次之凹面最小。而且凸面的曲率越大,饱和水汽压越大;凹面的曲率越大,饱和水汽压越小。露和霜:傍晚或夜间,地面或地物由于辐射冷却,使贴近地表面的空气层也随之降温,当空气中水汽含量过饱和时,在地面或地物的表面就有水汽的凝结物,如果此时的露点温度在0度以上,在地面或地物上就出现微小的水滴,称为露。若地面温度低于0C,则凝结物为疏松结构的白色冰晶,称为霜。露和霜的区别:露点温度不同,露的Td0,霜的Td大陆性气候。 2、年内变化:海洋性气候变化小,冬季较多;大陆性气候变化大,夏季较多。 3、降水类型:海洋性气候以气旋雨为主,变率小;大陆性气候以对流雨为主,变率大。 4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论