河北阜平中学2022年数学高二第二学期期末学业质量监测模拟试题含解析_第1页
河北阜平中学2022年数学高二第二学期期末学业质量监测模拟试题含解析_第2页
河北阜平中学2022年数学高二第二学期期末学业质量监测模拟试题含解析_第3页
河北阜平中学2022年数学高二第二学期期末学业质量监测模拟试题含解析_第4页
河北阜平中学2022年数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,圆为正三角形的内切圆,为切点,将一颗豆子随机地扔到该正三角形内,在已知豆子落在圆内的条件下,豆子落在(阴影部分)内的概率为()ABCD2集合,那么( )ABCD3若不等式2xln xx2ax3对x(0,)恒成立,则实数a的取

2、值范围是()A(,0)B(,4C(0,)D4,)4推理“圆内接四边形的对角和为;等腰梯形是圆内接四边形;”中的小前提是()ABCD和5已知命题,则命题的否定为 ( )ABCD6已知,则的大小关系为( )ABCD7给出下列四个说法:命题“,都有”的否定是“,使得”;已知、,命题“若,则”的逆否命题是真命题;是的必要不充分条件;若为函数的零点,则.其中正确的个数为( )ABCD8过抛物线的焦点F的直线与抛物线交于A、B两点,且,为坐标原点,则的面积与的面积之比为ABCD29执行如图的程序框图,若输出的,则输入的整数的最小值是( )ABCD10若,则为()A233B10C20D23311设函数f(x

3、)在R上可导,其导函数为f(x),且函数y(2x)f(x)的图像如图所示,则下列结论中一定成立的是( )A函数f(x)有极大值f(1)和极小值f(1)B函数f(x)有极大值f(1)和极小值f(2)C函数f(x)有极大值f(2)和极小值f(1)D函数f(x)有极大值f(1)和极小值f(2)12函数的极小值点是()A1B(1,)CD(3,8)二、填空题:本题共4小题,每小题5分,共20分。13已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_.14若函数有且只有一个零点,是上两个动点(为坐标原点),且, 若两点到直线的距离分别为,则的最大值为_.15已知函数,则=_16的平方根是

4、_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.()当时,恒成立,试求实数的取值范围;()若的解集包含,求实数的取值范围.18(12分)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称为“鳖臑”.如图,在“阳马”中,侧棱底面,且,过棱的中点,作交于点,连接.(1)证明:平面.试判断四面体是否为“鳖臑”,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若,求直线与平面所成角的正切值.19(12分)如图,在四棱锥中,平面,底面是菱形,分别是棱的中点.(1)证明:平面;(2)求二面角的余

5、弦值.20(12分)已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,且,证明:(为自然对数).21(12分)如图为一简单组合体,其底面为正方形,平面,且,为线段的中点()证明:;()求三棱锥的体积22(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为(1)若与相交于两点,求;(2)圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设正三角形的边长为,内切

6、圆半径为,求得内切圆半径,即可得阴影部分的面积;再求得三角形的面积,结合几何概型的求法即可得解.【详解】设正三角形的边长为,内切圆半径为,则由三角形面积公式可得,解得,则,所以由几何概型概率可得落在阴影部分的概率为,故选:A.【点睛】本题考查了等边三角形内切圆的性质应用,几何概型概率求法,属于基础题.2、D【解析】把两个集合的解集表示在数轴上,可得集合A与B的并集【详解】把集合A和集合B中的解集表示在数轴上,如图所示,则AB=x|-2x3故选A【点睛】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题3、B【解析】分析:由已知条件推导出ax+2lnx

7、+3x,x0,令y=x+2lnx+3【详解】详解:由题意2xlnx-x2所以ax+2lnx+3x设y=x+2lnx+3由y=0,得当x(0,1)时,y0,当x(1,+)时,所以x=1时,ymin=1+0+3=4,所以即实数a的取值范围是(-,4.点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题4、B【解析】由演绎推理三段论可知, 是大前提;是小前提;是结论【详解】由演绎推理三段论可知, 是大前提;是小前提;是结论,故选B【点睛】本题主要考

8、查演绎推理的一般模式5、D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.6、A【解析】分析:由,可得,则,利用做差法结合基本不等式可得结果.详解:,则,即 , 综上,故选A.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判

9、断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、C【解析】根据全称命题的否定可判断出命题的真假;根据原命题的真假可判断出命题的真假;解出不等式,利用充分必要性判断出命题的真假;构造函数,得出,根据零点的定义和函数的单调性来判断命题的正误.【详解】对于命题,由全称命题的否定可知,命题为假命题;对于命题,原命题为真命题,则其逆否命题也为真命题,命题为真命题;对于命题,解不等式,得或,所以,是的充分不必要条件,命题为假命题;对于命题,函数的定义域为,构造函数,则函数为增函数,又,为函数的零点,则,则,命题为真命题.故选:C.

10、【点睛】本题考查命题真假的判断,涉及命题的否定,四种命题的关系,充分必要的判断以及函数的零点,考查推理能力,属于中等题.8、D【解析】设点位于第一象限,点,并设直线的方程为,将该直线方程与抛物线方程联立,利用韦达定理得出,由抛物线的定义得出点的坐标,可得出点的纵坐标的值,最后得出的面积与的面积之比为的值.【详解】设点位于第一象限,点,设直线的方程为,将该直线方程与抛物线方程联立,得,由抛物线的定义得,得,可得出,故选:D.【点睛】本题考查抛物线的定义、直线与抛物线的综合问题,考查韦达定理在直线与抛物线综合问题中的应用,解题的关键在于利用抛物线的定义以及韦达定理求点的坐标,并将三角形的面积比转化

11、为高之比来处理,考查运算求解能力,属于中等题。9、A【解析】列举出算法的每一步循环,根据算法输出结果计算出实数的取值范围,于此可得出整数的最小值.【详解】满足条件,执行第一次循环,;满足条件,执行第二次循环,;满足条件,执行第二次循环,.满足条件,调出循环体,输出的值为.由上可知,因此,输入的整数的最小值是,故选A.【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.10、A【解析】对等式两边进行求导,当x1时,求出a1+2a2+3a3+4a4+5a5的值,再求出a0的值,即可得出答案【详解】对等式两边进行求

12、导,得:25(2x3)4a1+2a2x+3a3x2+4a4x3+5a5x4,令x1,得10a1+2a2+3a3+4a4+5a5;又a0(3)5243,a0+a1+2a2+3a3+4a4+5a5243+101故选A【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a1+2a2+3a3+4a4+5a5是解题的关键11、A【解析】由函数y(2x)f(x)的图像可知,方程f(x)0有两个实根x1,x1,且在(,1)上f(x)0,在(1,2)上f(x)0,在(2,)上f(x)0.所以函数f(x)有极大值f(1)和极小值f(1)12、A【解析】求得

13、原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【点睛】本小题主要考查利用导数求函数的极值点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用将变为,整理发现数列为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。14、【解析】根据函数的奇偶性先求解出的值,然

14、后根据判断出中点的轨迹,再根据转化关系将的最大值转化为圆上点到直线的距离最大值,由此求解出结果.【详解】因为的定义域为,且,所以是偶函数,又因为有唯一零点,所以,所以,所以,因为,所以,所以,所以,设的中点为,如下图所示:所以,又因为,所以,所以的轨迹是以坐标原点为圆心,半径为的圆,所以当取最大值时,为过垂直于的线段与的交点,所以,所以.故答案为:.【点睛】本题考查函数奇偶性、圆中的轨迹方程、圆上点到直线的距离最值,属于综合型题型,难度较难.圆上点到一条与圆相离直线的距离最值求解方法:先计算出圆心到直线的距离,则距离最大值为,距离最小值为.15、【解析】先求内层函数值,再求外层函数值.【详解】

15、根据题意,函数 ,则,则;故答案为【点睛】本题主要考查分段函数求值问题,分段函数的求值问题主要是利用“对号入座”策略.16、【解析】根据得解.【详解】由得解.【点睛】本题考查虚数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()【解析】()转化条件得,根据恒成立问题的解决方法即可得解;()转化条件得对恒成立,根据的取值范围分类讨论去绝对值即可得解.【详解】()当时,当且仅当时等号成立,.()时, 恒成立,对恒成立.当时,解得:, 当时,解得:, 综上:.【点睛】本题考查了绝对值不等式的解法和绝对值三角不等式的应用,考查了恒成立问题的解决方法和分类讨

16、论思想,属于中档题.18、(1)证明见解析,是“鳖臑”,四个直角分别为,;(2)【解析】(1)先证明面,可得,然后结合即可证明面,然后再证明面,即可得出四面体的四个面都是直角三角形(2)如图所示建立空间直角坐标系,是面的一个法向量,然后利用算出即可.【详解】(1)由面,面得,又,从而面,因为面所以由得面由面,面得,又,从而面可知四面体的四个面都是直角三角形,即四面体是“鳖臑”,四个直角分别为,(2)如图所示建立空间直角坐标系,由面可知,是面的一个法向量,设直线与面所成角为,即直线与平面所成角的正切值为【点睛】向量法是求立体几何中的线线角、线面角、面面角常用的方法.19、(1)见解析(2)【解析

17、】(1)依据线面平行的判定定理,在面中寻找一条直线与平行,即可由线面平行的判定定理证出;(2)建系,分别求出平面,平面的法向量,根据二面角的计算公式即可求出二面角的余弦值【详解】(1)证明:如图,取中点为,连结,则,所以与平行与且相等,所以四边形是平行四边形,所以平面,平面,所以平面.(2)令,因为是中点,所以平面,以为原点,所在直线分别为轴,建立空间直角坐标系,在菱形中,所以,在中,则,设平面的法向量为,所以,所以可取,又因平面的法向量,所以.由图可知二面角为锐二面角,所以二面角的余弦值为.【点睛】本题主要考查线面平行的判定定理应用以及二面角的求法,常见求二面角的方法有定义法,三垂线法,坐标

18、法20、(1)(2)见解析【解析】分析:(1)由题意可知,函数的定义域为,因为函数在为增函数,所以在上恒成立,等价于,由此可求的取值范围;(2)求出,因为有两极值点,所以, 设令,则,上式等价于要证,令,根据函数的单调性证出即可详解:(1)由题意可知,函数的定义域为, 因为函数在为增函数,所以在上恒成立,等价于在上恒成立,即,因为,所以,故的取值范围为. (2)可知,所以, 因为有两极值点,所以, 欲证,等价于要证:,即,所以,因为,所以原式等价于要证明:,由,可得,则有,由原式等价于要证明:,即证,令,则,上式等价于要证, 令,则因为,所以,所以在上单调递增,因此当时,即.所以原不等式成立,即. 点睛:本题考查了函数的单调性,考查导数的应用以及不等式的证明,属难题21、(1)见解析(2)【解析】试题分析:() 要证线线垂直,一般先证线面垂直,注意到底面,考虑证明与平面平行(或其内一条直线平行),由于是中点,因此取中点(实质上是与的交点),可证是平行四边形,结论得证;()求三棱锥的体积,采用换底,即,由已知可证就是三棱锥的高,从而易得体积试题解析:()连结与交于点,则为的中点,连结, 为线段的中点,且又且且四边形为平行四边形,, 即又平面,面, ,()平面,平面,平面平面,平面平面,平面,平面.三棱锥的体积考点:线面垂直的判定与性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论