




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义在R上的偶函数满足,当时,设函数,则与的图象所有交点的横坐标之和为( )A3B4C5D62下列命题中真命题的个数是( )若是假命题,则、都是假命题;命题“,”的否定是“,”若:,:,则是的充分不必要条件.A0B1C2D33在一个袋子中装
2、有个除颜色外其他均相同的小球,其中有红球个、白球个、黄球个,从袋中随机摸出一个球,记下颜色后放回,连续摸次,则记下的颜色中有红有黄但没有白的概率为( )ABCD4设,由不等式,类比推广到,则( )ABCD5圆=8sin的圆心到直线A2B3C2D26设全集为,集合,则( )ABCD7把圆x2+(y-2)A线段B等边三角形C直角三角形D四边形8中,且,点满足,则ABCD9已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为ABCD10在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,则圆的极坐标方程为ABCD11要将甲、乙、丙、丁名同学
3、分到三个班级中,要求每个班级至少分到一人,则甲被分到班的概率为()ABCD12已知全集U=R,集合A=0,1,2,3,4,5,B=xR|x3,则ACA4,5B3,4,5C0,1,2D0,1,2,3二、填空题:本题共4小题,每小题5分,共20分。13已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是_。14如图,棱长为2的正方体中,是棱的中点,点P在侧面内,若垂直于,则的面积的最小值为_.15点P是棱长为1的正方体ABCDA1B1C1D1的底面A1B1C1D1上一点,则的取值范围是_.16计算定积分-11三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某兴趣
4、小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日昼夜温差81013129就诊人数(个)1825282617该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验(1)若选取的是1月的一组数据,请根据2至5月份的数据求出关于的线性回归方程(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想
5、?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?参考公式:, .18(12分)设函数.(1)求函数的单调区间及极值;(2)若函数在上有唯一零点,证明:.19(12分)已知函数(1)若函数在区间上为减函数,求实数的取值范围(2)当时,不等式恒成立,求实数的取值范围20(12分)在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位曲线的极坐标方程为 .(1)求的普通方程和的直角坐标方程;(2)已知点是曲线上任一点,求点到直线距离的最大值.21(12分)在平面直角坐标系中,点是坐标原点,已知点为线段上
6、靠近点的三等分点求点的坐标:若点在轴上,且直线与直线垂直,求点的坐标22(10分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率2009201020112012201320142015201620172018(互联网普及率(网民人数/人口总数)100%;手机网民普及率(手机网民人数/人口总数)100%)()从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;()分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年
7、数,求的分布列及数学期望;()若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,分析可得函数与的图象都关于直线对称,作出两个函数图象,分析其交点情况即可得到答案.【详解】由题意,函数满足可知,函数的图象关于直线对称,又函数为偶函数,所以函数的图象关于轴对称,由函数可知,函数的图象关于直线对称,画出函数与的图象如图所示:设图中四个交点的横坐标为,由图可知,所以函数与的图象所有交点的横坐标之和为4.故选:B【点睛】本题考查函数的奇
8、偶性和对称性、指数函数的图象与性质;考查数形结合思想和运算求解能力;利用函数的奇偶性和对称性作出函数图象是求解本题的关键;属于综合型、难度大型试题.2、C【解析】分析:由复合命题的真假判断判断;写出全程命题的否定判断;由不等式的性质结合充分必要条件的判定方法判断详解:若pq是假命题,则p,q中至少一个是假命题,故错误;命题“xR,x3x2+10”的否定是“”,故正确;若x10,则,反之,若,则x0或x1又p:x1,q:,p是q的充分不必要条件,故正确正确命题的个数是2个故选:C点睛:本题考查命题的真假判断与应用,考查充分必要条件的判定方法,考查命题的否定,属于中档题3、C【解析】分析:由已知得
9、取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,由此能求出记下的颜色中有红有黄但没有白的概率.详解:从袋中随机摸出一个球,摸到红球、白球、黄球的概率分别为,由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,下的颜色中有红有黄但没有白的概率为.故选:C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.4、D【解析】由已知中不等式: 归纳可得:不等式左边第一项为 ,第二项为 ,右边为 ,故第 个不等式为: ,故 ,故选D.【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推
10、理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.5、C【解析】先把圆和直线的极坐标方程化成直角坐标方程,再利用点到直线的距离公式求解.【详解】由=8sin得x2+y直线tan=3的直角坐标方程为所以圆心到直线3x-y=0的距离为0-4故选:C【点睛】本
11、题主要考查极坐标方程和直角坐标方程的互化,考查点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、C【解析】利用分式不等式的解法求出集合,求出两个集合的公共部分即为两个集合的交集.【详解】由集合可知;因为,,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.7、B【解析】通过联立方程直接求得交点坐标,从而判断图形形状.【详解】联立x2+(y-2)2=1与x2【点睛】本题主要考查圆与椭圆的交点问题,难度不大.8、D【解析】分析:以点为原点,以所在的直线
12、为轴,以所在的直线为轴,建立平面直角坐标系,求得点的坐标,利用向量的坐标运算即可求解详解:由题意,以点为原点,以所在的直线为轴,以所在的直线为轴,建立平面直角坐标系,则,设点,则,又由,所以,即,所以,所以,故选D点睛:本题主要考查了向量的坐标表示与向量的坐标运算问题,其中恰当的建立直角坐标系,求得向量的坐标,利用向量的数量积的运算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力9、C【解析】根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【详解】设椭圆的左焦点为,为短轴的上端点,
13、连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又 四边形为平行四边形 又,解得:点到直线距离:,解得:,即 本题正确选项:【点睛】本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.10、A【解析】求出圆C的圆心坐标为(2,0),由圆C经过点得到圆C过极点,由此能求出圆C的极坐标方程【详解】在中,令,得,所以圆的圆心坐标为(2,0).因为圆经过点,所以圆的半径,于是圆过极点,所以圆的极坐标方程为.故选A【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思
14、想,属于中档题11、B【解析】根据题意,先将四人分成三组,再分别分给三个班级即可求得总安排方法;若甲被安排到A班,则分甲单独一人安排到A班和甲与另外一人一起安排到A班两种情况讨论,即可确定甲被安排到A班的所有情况,即可求解.【详解】将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则将甲、乙、丙、丁名同学分成三组,人数分别为1,1,2;则共有种方法,分配给三个班级的所有方法有种;甲被分到A班,有两种情况:一,甲单独一人分到A班,则剩余两个班级分别为1人和2人,共有种;二,甲和另外一人分到A班,则剩余两个班级各1人,共有种;综上可知,甲被分到班的概率为,故选:B.【点睛】本题考查了
15、排列组合问题的综合应用,分组时注意重复情况的出现,属于中档题.12、C【解析】通过补集的概念与交集运算即可得到答案.【详解】根据题意得CUB=x|x3,故【点睛】本题主要考查集合的运算,难度很小.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,所以函数是奇函数,因为,所以数在上单调递增,又,即,所以,即,解得,故实数的取值范围为点睛:解函数不等式时,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在函数的定义域内14、【解析】建立空间直角坐标系,由,求得,得到,进而求得三角形的面积的最小值,得到答案.【详解
16、】以D点为空间直角坐标系的原点,以DC所在直线为y轴,以DA所在直线为x轴,以 为z轴,建立空间直角坐标系.则点,所以.因为,所以,因为,所以,所以,因为B(2,2,0),所以,所以因为,所以当时,.因为BCBP,所以.故答案为:.【点睛】本题主要考查了空间向量的应用,其中解答建立适当的空间直角坐标系,利用向量的坐标表示,以及向量的数量积的运算,求得的最小值是解答的关键,着重考查了推理与运算能力,属于中档试题.15、 ,0【解析】建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0 x1,0y1,z1,计算x2x,利用二次函数的性质求得它的值域即可【详解】解:以点D为原点,以DA
17、所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1 (0,1,1),设点P的坐标为(x,y,z),由题意可得 0 x1,0y1,z1;(1x,y,1),(x,1y,0),x(1x)y(1y)+0 x2x+y2y,由二次函数的性质可得,当xy时,取得最小值为;当x0或1,且y0或1时,取得最大值为0,则的取值范围是,0故答案为:,0【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目16、2【解析】试题分析:-1考点:定积分计算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1
18、);(2)理想,13人.【解析】(1)由题意计算平均数和回归系数,写出线性回归方程;(2)利用回归方程计算时的值,判断线性回归方程是理想的;再计算时的值,即可预测昼夜温差为时因感冒而就诊的人数【详解】解:(1)由题意计算,;由公式求得:,;关于的线性回归方程为;(2)当时,且;该小组所得线性回归方程是理想的;当时,即预测昼夜温差为时,因感冒而就诊的人数约为13人【点睛】本题考查了线性回归方程的求法与应用问题,是基础题18、(1)的减区间为,增区间为,极小值为,无极大值(2)见解析【解析】(1)求出函数的定义域以及导数,利用导数求出函数的单调区间,并由单调性得出函数的极值;(2)利用参变量分离法
19、得出关于的方程在上有唯一解,构造函数,得出,构造函数,求出该函数的导数,判断导数的符号,得出函数的单调性,求出函数的最小值转化即可。【详解】(1)的定义域为,当时,为减函数;当时,为增函数,有极小值,无极大值,故的减区间为,增区间为,极小值为,无极大值;(2)函数在上有唯一零点,即当时,方程有唯一解,有唯一解,令,则令,则,当时,故函数为增函数,又,在上存在唯一零点,则,且,当时,当时,在上有最小值.ly,.【点睛】本题考查利用导数研究函数的单调性与极值、以及利用导数研究函数的零点问题,构造新函数是难点,也是解题的关键,考查转化与化归数学思想,属于难题.19、(1)(2)【解析】试题分析:(1
20、)由函数求出导数,由区间上为减函数得到恒成立,通过分离参数,求函数最值得到的范围(2)将不等式恒成立转化为求函数最值问题,首先通过函数导数得到单调区间,进而求出最值,在求单调区间时注意对参数分情况讨论试题解析:(1)因为函数在区间上为减函数,所以对恒成立即对恒成立(2)因为当时,不等式恒成立,即恒成立,设,只需即可由当时,当时,函数在上单调递减,故成立当时,令,因为,所以解得1)当,即时,在区间上,则函数在上单调递增,故在上无最大值,不合题设2)当时,即时,在区间上;在区间上函数在上单调递减,在区间单调递增,同样在无最大值,不满足条件当时,由,故,故函数在上单调递减,故成立综上所述,实数的取值范围是考点:1不等式与函数的转化;2利用导数求函数的单调性最值20、(1); ;(2)【解析】(1)消参数得的普通方程,根据得的直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高一英语外研版同步训练:Module3综合测评
- 第十四届交通运输行业技能竞赛(桥隧工)理论备考试题库(含答案)
- 职业健康教育培训
- 2025房屋租赁合同模板3
- 2025合同范本集锦业务合作与行政管理之参考
- 2024年年报江西地区A股财务费用排名前三大上市公司
- 现代物流管理系统知识要点解析
- 国际市场营销策略练习题
- 艺术创作灵感来源与创作过程分析题
- 体育赛事活动策划与组织实施教程
- 氢氧化钙化学品安全技术说明书
- 2023-2024学年福建省晋江市南安市小学语文六年级期末高分题附参考答案和详细解析
- 医保应急处理预案制度
- 人民医院整形外科临床技术操作规范2023版
- 实验一 显微镜的使用及微生物形态的观察
- 植物化学保护学知到章节答案智慧树2023年华南农业大学
- 油井调剖技术参考资料
- 计算机系统操作员中级理论知识试卷12技能考试题库-
- 2023-尔雅《星海求知:天文学的奥秘》课后章节答案
- LY/T 1955-2022林地保护利用规划林地落界技术规程
- 专练11(30题)(网格作图题)2022中考数学考点500题(吉林)解析版
评论
0/150
提交评论