版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数是的导函数,则( )ABCD2展开式中的常数项为A B C D3直三棱柱中,、分别为、的中点,则异面直线与所成角的余弦值为( )ABCD4已知复数z满足,则复数等于
2、( )ABCDi5某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为( )ABC1D26函数导数是( )ABCD7已知二项式的展开式的第二项的系数为,则( )ABC或D或8如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产品(吨)与相应的生产能耗(吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,那么表中的值为()A4.5B3.75C4D4.19在复数列中,设在复平面上对应的点为,则( )A存在点,对任意的正整数,都满足B不存在点,对任意的正整数,都满足C存在无数个点,对任意的正整数,都满足D存在唯一的点,对任意的正整数,都满足10已知:,且,则A
3、BCD11已知正方体的棱长为,定点在棱上(不在端点上),点是平面内的动点,且点到直线的距离与点到点的距离的平方差为,则点的轨迹所在的曲线为A圆B椭圆C双曲线D抛物线12如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为( )A55B89C120D144二、填空题:本题共4小题,每小题5分,共20分。13已知,则_;14已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的_条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).15 “杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除
4、所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为_.16有3个兴趣小组,甲乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲乙两位同学参加同一个兴趣小组的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)端午节吃粽子是我国的传统习俗,设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同,从中任意选取个()求三种粽子各取到个的概率()设表示取到的豆沙粽个数,求的分布列与数学期望18(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。(1)
5、根据题目条件完成上面22列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校三人在某大学自主招生中通过的概率分别为,用随机变量X表示三人在该大学自主招生中通过的人数,求X的分布列及期望.参考公式:.参考数据:19(12分)将正整数排成如图的三角形数阵,记第行的个数之和为.(1)设,计算,的值,并猜想的表达式;(2)用数学归纳法证明(1)的猜想.20(12分)已知曲线的参数方程为(为参数),以原点为极点,以轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)射线与曲线交点为、两点,射线与曲线交于点,求的最大
6、值21(12分)集合A=x|-3x5,B=x|-2x7(1)求AB, AB(2)(RA)B22(10分)将下列参数方程化为普通方程:(1)(为参数);(2)(为参数).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:易得到fn(x)表达式以8为周期,呈周期性变化,由于20188余2,故f2008(x)= f2(x),进而得到答案详解:f0(x)=ex(cosx+sinx),f0(x)=ex(cosx+sinx)+ex(sinx+cosx)=2excosx,f1(x)=excosx,f1(x)=ex(cosxsin
7、x),f2(x)=ex(cosxsinx),f2(x)=ex(cosxsinx)+ex(sinxcosx)=2exsinx,f3(x)=exsinx,f3(x)=ex(sinx+cosx),f4(x)=ex(cosx+sinx),f4(x)=2excosx,f5(x)=excosx,f6(x)=ex(cosxsinx),f7(x)=exsinx,f8(x)=ex(cosx+sinx),= f2(x)=,故选:B点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性
8、命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.2、B【解析】解:因为则可知展开式中常数项为,选B3、B【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则、,、,设异面直线与所成角为,则,异面直线与所成角的余弦值为.故选:B【点睛】本题考查了空间向量法求异面直线所成的
9、角,解题的关键是建立恰当的坐标系,属于基础题.4、D【解析】把给出的等式通过复数的乘除运算化简后,直接利用共轭复数的定义即可得解.【详解】,.故选:D.【点睛】本题考查了复数的代数形式的乘除运算,考查共扼复数,是基础题.5、B【解析】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小 故答案选B【点睛】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.6、A【解析】根据导数的基本公式和运算法则求导即可【详解】,
10、故选:A【点睛】本题考查了导数的基本公式和运算法则,属于基础题7、A【解析】分析:根据第二项系数,可求出;由定积分基本性质,求其原函数为,进而通过微积分基本定理求得定积分值。详解:展开式的第二项为 所以系数 ,解得 所以 所以选A点睛:本题考查了二项式定理和微积分基本定理的综合应用,通过方程确定参数的取值,综合性强,属于中档题。8、C【解析】根据回归直线必过,求出代入回归直线可构造出方程求得结果.【详解】由数据表可知:,由回归直线可知:,即:,解得:本题正确选项:【点睛】本题考查利用回归直线求解实际数据点的问题,关键是能够明确回归直线必过点,属于基础题.9、D【解析】由,由复数模的性质可得出,
11、可得出数列是等比数列,且得出,再由,结合向量的三角不等式可得出正确选项.【详解】,所以数列是以为首项,以为公比的等比数列,且(为坐标原点),由向量模的三角不等式可得,当点与坐标原点重合时,因此,存在唯一的点,对任意的正整数,都满足,故选:D.【点睛】本题考查复数的几何意义,同时也考查了复数模的性质和等比数列的综合应用,解题的关键就是利用向量模的三角不等式构建不等关系进行验证,考查推理能力,属于难题.10、C【解析】分析:由题目条件,得随机变量x的均值和方差的值,利用 即可得出结论详解:由题意, 故选:C点睛:本题主要考查正态分布的参数问题,属于基础题,正态分布涉及到连续型随机变量的分布密度,是
12、概率统计中最重要的一种分布,也是自然界最常见的一种分布11、D【解析】作,连接,以为原点建立空间直角坐标系,利用勾股定理和两点间距离公式构造,整理可得结果.【详解】作,垂足分别为以为原点建立如下图所示的空间直角坐标系:设,由正方体特点可知,平面,整理得:的轨迹是抛物线本题正确选项:【点睛】本题考查立体几何中点的轨迹问题,关键是能够通过建立空间直角坐标系,求出动点满足的方程,从而求得轨迹.12、A【解析】根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项,得到答案.【详解】由题意,可知,故选A.【点睛】本题主要考查了归纳推理的应用,其中解答中读懂题意,理清
13、前后项的关系,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别令和,代入求值,然后两式相减计算结果.【详解】当时, 当时,两式相减:,所以:.故答案为:【点睛】本题考查二项展开式求系数和,重点考查赋值法,属于基础题型.14、必要不充分【解析】根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时, 为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由
14、可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.15、【解析】根据“杨辉三角”的特点可知次二项式的二项式系数对应“杨辉三角”中的第行,从而得到第行去掉所有为的项的各项之和为:;根据每一行去掉所有为的项的数字个数成等差数列的特点可求得至第行结束,数列共有项,则第项为,从而加和可得结果.【详解】由题意可知,次二项式的二项式系数对应“杨辉三角”中的第行则“杨辉三角”第行各项之和为:第行去掉所有为的项的各项之和为:从第行开始每一行去掉所有为的项的数字个数为:则:,即至第行结束,数列共有项第项为第行第个
15、不为的数,即为:前项的和为:本题正确结果:【点睛】本题考查数列求和的知识,关键是能够根据“杨辉三角”的特征,结合二项式定理、等差等比数列求和的方法来进行转化求解,对于学生分析问题和总结归纳的能力有一定的要求,属于较难题.16、【解析】试题分析:由题意可知:.考点:随机事件的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) ;(2)见解析.【解析】试题分析:()根据古典概型的概率公式进行计算即可;()随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望试题解析:(1)令A表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有P(A).(2)
16、X的可能取值为0,1,2,且P(X0),P(X1),P(X2)综上知,X的分布列为:X012P故E(X)012(个)考点:离散型随机变量的期望与方差;古典概型及其概率计算公式18、(1)见解析;(2)见解析【解析】(1)由题可得表格,再计算,与6.635比较大小即可得到答案;(2)随机变量X的可能取值为0,1,2,3,分别利用乘法原理计算对应概率,从而求得分布列和数学期望.【详解】(1)22列联表如下通过未通过总计甲校402060乙校203050总计6050110由算得,所以有99%的把握认为学生的自主招生通过情况与所在学校有关(2)设A,B,C自主招生通过分别记为事件M,N,R,则随机变量X
17、的可能取值为0,1,2,3. , 所以随机变量X的分布列为:X0123P【点睛】本题主要考查独立性检验统计案例,随机变量的分布列和数学期望,意在考查学生的分析能力,转化能力及计算能力,比较基础.19、(1);(2)见解析【解析】分析:直接计算,猜想:;(2)证明:当时,猜想成立. 设时,命题成立,即证明当时,成立。详解:(1)解:,猜想;(2)证明:当时,猜想成立.设时,命题成立,即,由题意可知 .所以 , ,所以时猜想成立.由、可知,猜想对任意都成立.点睛:推理与证明中,数学归纳法证明数列的通项公式是常见的解法。根据题意先归纳猜想,利用数学归纳法证明猜想。数学归纳法证明必须有三步:当时,计算
18、得出猜想成立.当时,假设猜想命题成立,当时,证明猜想成立。20、(1),;(2)【解析】(1)先将曲线的参数方程化为普通方程,再由转化为极坐标方程,将曲线的极坐标利用两角差的正弦公式展开,由转化为直角坐标方程;(2)点和点的极坐标分别为,将点、的极坐标分别代入曲线、的极坐标方程,得出、的表达式,再利用辅助角公式计算出的最大值。【详解】(1)由曲线的参数方程(为参数)得:,即曲线的普通方程为,又, 曲线的极坐标方程为,曲线的极坐标方程可化为, 故曲线的直角方程为;(2)由已知,设点和点的极坐标分别为,其中则,于是 其中,由于,当时,的最大值是【点睛】本题考查参数方程、极坐标方程与普通方程之间的互化,以及利用极坐标方程求解最值问题,解题时要充分理解极坐标方程所适用的基本条件,熟悉极坐标方程求解的基本步骤,考查计算能力,属于中等题。21、(1) AB=x|-3x7;(2)(RA)B=x|5x7【解析】试题分析:利用数轴进行集合间的交并补运算.试题解析:(1)A=x|-3x5,B=x|-2x7, AB=x|-3x7;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投标委托书(15篇)
- 建筑工程施工项目承包合同书
- 细胞-乳腺癌课件
- 马来酸麦角新碱联合卡前列素氨丁三醇治疗高危产后出血倾向二次剖宫产产妇的效果
- 中国企业智能化成熟度报告(2024) -企业智能化转型进入2.0时代
- 广东省中山市高考语文模拟试题(含答案)
- 2025年养老行业前景与未来发展趋势预测
- 2024年食品行业食品安全管理体系认证合同
- 餐厅供货协议合同协议范本模板
- 汽车修理厂承包合同模板
- 输变电工程监督检查标准化清单-质监站检查
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 工伤赔偿授权委托书范例
- 工程变更履历表
- 煤矿岗位标准化作业流程
- 唯物史观课件
- 信息资源管理(马费成-第三版)复习重点
- 邮轮外部市场营销类型
- GB/T 42460-2023信息安全技术个人信息去标识化效果评估指南
评论
0/150
提交评论