版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的外接圆的圆心为,则等于( )ABCD2一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球
2、各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为( )ABCD3已知,是不全相等的正数,则下列命题正确的个数为( );与及中至少有一个成立;,不能同时成立ABCD45位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A10种B20种C25种D32种5已知是定义在上的函数,且对于任意,不等式恒成立,则整数的最小值为( )A1B2C3D46袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6”,事件“三次抽
3、到的号码都是2”,则( )ABCD7函数的图像恒过定点,若定点在直线上,则的最小值为( )A13B14C16D128设 则=( )ABCD9已知复数z满足(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为( )A双曲线的一支B双曲线C一条射线D两条射线10给出下列三个命题:“若,则”为假命题;若为真命题,则,均为真命题;命题,则.其中正确的个数是( )A0B1C2D311设为虚数单位,则的展开式中含的项为()ABCD12若函数有三个零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13任取两个小于1的正数x、y,若x、y、1能作为三角形的三条边
4、长,则它们能构成钝角三角形三条边长的概率是_14若向量,且,则与的夹角等于_15集合的所有子集个数为_16将1,2,3,4,5,这五个数字放在构成“”型线段的5个端点位置,要求下面的两个数字分别比和它相邻的上面两个数字大,这样的安排方法种数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)改革开放以来,人们的支付方式发生了巨大转变近年来,移动支付已成为主要支付方式之一为了解某校学生上个月,两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:交付金额(元)支付方式大
5、于2000仅使用18人9人3人仅使用10人14人1人()从全校学生中随机抽取1人,估计该学生上个月,两种支付方式都使用的概率;()从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;18(12分)已知三点,曲线上任意一点满足(1)求的方程;(2)动点在曲线上,是曲线在处的切线问:是否存在定点使得与都相交,交点分别为,且与的面积之比为常数?若存在,求的值;若不存在,说明理由19(12分)如图,平面,在中, ,交于点,(1)证明:;(2)求直线与平面所成角的正弦值20(12分)已知定义域为R的函数f(x)是奇函数,且aR(1)求a的值
6、;(2)设函数g(x),若将函数g(x)的图象向右平移一个单位得到函数h(x)的图象,求函数h(x)的值域21(12分)如图,直三棱柱的底面为直角三角形,两直角边和的长分别为4和3,侧棱的长为5.(1)求三棱柱的体积;(2)设是中点,求直线与平面所成角的大小.22(10分)设椭圆的右焦点为,点,若(其中为坐标原点)()求椭圆的方程()设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】,选C2、C【解析】每次所取的3个小球颜色各不相同的概率为:,这3
7、次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.3、C【解析】假设等式成立,由其推出a、b、c的关系,判断与题干是否相符;假设其全部不成立,由此判断是否存在符合条件的数;举例即可说明其是否能够同时成立.【详解】对,假设(a-b)2+(b-c)2+(c-a)2=0a=b=c与已知a、b、c是不全相等的正数矛盾,正确;对,假设都不成立,这样的数a、b不存在,正确;对,举例a=1,b=2,c=3,ac,bc,ab能同时成立,不正确故选C【点睛】本题考查命题真假的判断,利用反证法、分析法等方式即可证明,有时运用举例说明的方式更快捷.4、D【解析】每个同学都有2种选择,根据乘法原
8、理,不同的报名方法共有种,应选D.5、A【解析】利用的单调性和奇偶性,将抽象不等式转化为具体不等式,然后将恒成立问题转化成最值问题,借助导数知识,即可解决问题【详解】,可知,且单调递增,可以变为,即,可知,设,则,当时,当时,单调递增;当时,单调递减,可知,整数的最小值为1.故选A.【点睛】本题主要考查了函数的性质、抽象不等式的解法、以及恒成立问题的一般解法,意在考查学生综合运用所学知识的的能力6、A【解析】试题分析:由题意得,事件“三次抽到的号码之和为”的概率为,事件同时发生的概率为,所以根据条件概率的计算公式.考点:条件概率的计算.7、D【解析】分析:利用指数型函数的性质可求得定点,将点的
9、坐标代入,结合题意,利用基本不等式可得结果.详解:时,函数值恒为,函数的图象恒过定点,又点在直线上,又,(当且仅当时取“=”),所以,的最小值为,故选D.点睛:本题主要考查指数函数的性质,基本不等式求最值,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).8、D【解析】分析:先根据复数除法法则求,再根据共轭复数定义得详解:因为所以选D.点睛:首先对于复数
10、的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为9、C【解析】分析:利用两个复数的差的绝对值表示两个复数对应点之间的距离,来分析已知等式的意义详解:复数z满足(i是虚数单位),在复平面内复数z对应的点为Z,则点Z到点(1,2)的距离减去到点(2,1)的距离之差等于3,而点(1,2)与点(2,1)之间的距离为3,故点Z的轨迹是以点(1,2)为端点的经过点(2,1)的一条射线故选 C点睛:本题考查两个复数的差的绝对值的意义,两个复数的差的绝对值表示两个复数对应点之间的距离10、B【解析】试题分析:若,则且,所以正确;若为真
11、命题,则,应至少有一个是真命题,所以错;正确考点:1.四种命题;2.命题的否定11、A【解析】利用二项展开式,当时,对应项即为含的项.【详解】因为,当时,.【点睛】本题考查二项式定理中的通项公式,求解时注意,防止出现符号错误.12、A【解析】令分离常数,构造函数,利用导数研究的单调性和极值,结合与有三个交点,求得的取值范围.【详解】方程可化为,令,有,令可知函数的增区间为,减区间为、,则,当时,则若函数有3个零点,实数的取值范围为故选A.【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5
12、分,共20分。13、【解析】求出这三个边正好是钝角三角形的三个边的等价条件,根据几何概型的概率公式,即可得到结论【详解】根据题意可得,三边可以构成三角形的条件为:.这三个边正好是钝角三角形的三个边,应满足以下条件:,对应的区域如图,由圆面积的为,直线和区域围成的三角形面积是,则x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率故答案为【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)
13、不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.14、【解析】由平面向量数量积的运算的:,即与的夹角等于 【详解】由,所以,所以,即与的夹角等于,故答案为:【点睛】本题考查向量数量积的坐标运算、向量的夹角公式、向量模的求法,属于基础题。15、8【解析】试题分析:集合有3个元素,集合的所有子集个数为考点:本题考查了子集的个数点评:解决此类问题常常用到:若集合有n个元素,则该集合的所有子集个数为16、1【解析】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5
14、时,有2(1+1)4种情况;(2)下面是4和5时,有212种情况,继而得出结果【详解】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)4种情况;(2)下面是4和5时,有212种情况,所以一共有4+121种方法种数故答案为1【点睛】本题考查的是分步计数原理,考查分类讨论的思想,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()见解析,1【解析】()根据题意先计算出上个月,两种支付方式都使用的学生人数,再结合古典概型公式计算即可;()由题求出使用两种支付方式金额不大于1000的人数和金额大于1000的人数所占概率,再结合相
15、互独立事件的概率公式计算即可【详解】()由题意可知,两种支付方式都使用的人数为:人,则:该学生上个月,两种支付方式都使用的概率()由题意可知,仅使用支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,仅使用支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,且可能的取值为0,1,1,的分布列为:011其数学期望:【点睛】本题考查概率的简单计算,离散型随机变量的分布列和数学期望,属于中档题18、(1);(2)存在,.【解析】分析:(1)先求出、的坐标,由此求得|和的值,两式相等,化简可得所求;(2)根据直线PA,PB的方程以及曲线C在点Q(x0,y0)(2
16、x02)处的切线方程, D、E两点的横坐标,可得SPDE和SQAB的比值,从而求得参数值.详解:(1)依题意可得,由已知得,化简得曲线C的方程: ,(2)假设存在点满足条件,则直线的方程是,直线的方程是,曲线C在点Q处的切线l的方程为:,它与y轴的交点为,由于,因此当时,存在,使得,即l与直线平行,故当时与题意不符当时,所以l 与直线一定相交,分别联立方程组,解得的横坐标分别是则,又,有,又于是对任意,要使与的面积之比是常数,只需t满足,解得,此时与的面积之比为2,故存在,使与的面积之比是常数2. 点睛:本题主要考查抛物线的标准方程的应用,利用导数求曲线上某点的切线方程,求得F点的坐标,D、E
17、两点的横坐标,是解题的关键,属于中档题利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.19、(1)证明见解析;(2).【解析】过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值由向量的数量积运算易求【详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为y轴,为轴,建立空间坐标系 ,如图, 在中,交于点, ;,, ;(2)由(1)可知, 设平面B
18、EF的法向量为,所以,取, 设直线与平面所成角为,所以= .【点睛】本题考查证明空间两直线垂直,考查求直线与平面所成的角,解题方法是建立空间直角坐标系,由向量法证明线线垂直,求线面角,这种方法主要考查学生的运算求解能力,思维量很少,解法固定20、(1);(2)【解析】(1)由题意可得,解方程可得的值,即可求得的值;(2)求得,由图象平移可得,再由指数函数的值域,即可求解,得到答案【详解】(1)由题意,函数是定义域为R的奇函数,所以,即,所以,经检验时,是奇函数. (2)由于,所以,即,所以,将的图象向右平移一个单位得到的图象,得,所以函数的值域为【点睛】本题主要考查了函数的奇偶性的应用,指数函数的图象与性质的应用,以及图象的变换,着重考查了变形能力,以及推理与运算能力,属于基础题21、(1)30;(2).【解析】(1)根据体积公式直接计算;(2)说明就是直线与平面所成角,再计算.【详解】(1)根据题意可知,;(2)连接,平面,就是直线与平面所成角,是直角三角形,且是中点, ,直线与平面所成角的大小.【点睛】本题考查柱体的体积公式和直线与平面所成的角,意在考查基本概念和计算求解能力,属于简单题型.22、()()的最大值为【解析】试题分析:()结合题意可得所以,由可解得,故得椭圆方程()设圆的圆心为,由向量的知识可得,从而将求的最大值转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2018高考化学三月(二轮)课外自练(七)及答案
- 浙江省杭州市学军中学紫金港高中2023-2024学年高一下学期期中考前测英语试题2
- 安徽省宣城市高三第二次调研测试理数试题
- 2024年B2B社媒营销研究报告
- 婚庆策划中介居间合同样本
- 4S店装修项目合同模板
- 2023-2024学年全国小学四年级上信息与技术仁爱版期末试卷(含答案解析)
- 2024年展馆工程施工合同范本
- 2024年宁夏客运丛业资格证考试
- 即食型金针菇产品项目可行性研究报告
- 成功路上无捷径作文
- 物联网技术及应用基础(第2版) 课件58.4G技术-课件
- 光伏公司考核方案
- 出入库登记表出入库表
- 绘本故事-彩虹色的花
- 大象版五年级科学上册 (生活环境与健康)课件
- 现代汉语汉字PPT
- 《复变函数》教案 第三章 复变函数的积分 伊犁师范学院数学系
- 四川省专业技术人员继续教育2023年公需课试题及答案
- 职场人际关系与沟通课件
- 部编版八年级历史上册《戊戌变法》评课稿
评论
0/150
提交评论