版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1已知向量,则与的夹角为( )A0BCD2已知复数z=1+i1-i (i是虚数单位),则A-iB-1CiD3下列说法:将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;设有一个回归方程,变量增加个单位时,平均减少个单位;线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为 在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是( )A1B2C3D44已知,将函数的图象向左平移个单位,得到的图象关于轴对称,则为( )ABCD5某城市关系要好的,四个家庭各有两个小孩共人
3、,分别乘甲、乙两辆汽车出去游玩,每车限坐名(乘同一辆车的名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的名小孩恰有名来自于同一个家庭的乘坐方式共有( )A种B种C种D种6设,下列不等式中正确的是( ) A和B和C和D和7若函数,函数有3个零点,则k的取值范围是()A(0,1)BCD8复数是虚数单位的虚部是AB1CDi9在等差数列中,若,则( )AB1CD10一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为ABCD11如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”
4、的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件12某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图图中A点表示十月的平均最高气温约为15,B点表示四月的平均最低气温约为5下面叙述不正确的是 ( )A各月的平均最低气温都在0以上B七月的平均温差比一月的平均温差大C三月和十一月的平均最高气温基本相同D平均最高气温高于20的月份有5个二、填空题:本题共4小题,每小题5分,共20分。13已知两直线的方向向量分别为, ,若两直线平行,则_14已知不等式对于大于的正整数恒成立,则实数的取值范围为_ .15设椭圆的左、右顶点分别为A,
5、B,点P在椭圆上且异于A,B两点,O为坐标原点若直线PA与PB的斜率之积为,则椭圆的离心率为_16_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).(1)求样本容量和频率分布直方图中的(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在 内的株数,求随机变量的分布列及数学期望.18(12分)已知椭圆的
6、四个顶点围成的菱形的面积为,点与点分别为椭圆的上顶点与左焦点,且的面积为(点为坐标原点).(1)求的方程;(2)直线过且与椭圆交于两点,点关于的对称点为,求面积的最大值.19(12分)已知数列的首项为1.记.(1)若为常数列,求的值:(2)若为公比为2的等比数列,求的解析式:(3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式:若不存在,请说明理由.20(12分)已知函数的定义域为,值域是.()求证: ;()求实数的取值范围.21(12分)已知函数.(1)画出函数的大致图象,并写出的值域;(2)若关于的不等式有解,求实数的取值范围.22(10分)为了研究黏虫孵化的平均温度(单位
7、:)与孵化天数之间的关系,某课外兴趣小组通过试验得到以下6组数据:他们分别用两种模型,分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:经过计算,.(1)根据残差图,比较模型、的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到).参考公式:线性回归方程中,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设,故,应选答案C2、D【解析】先利用复数的除法将复数z表示为一般形式,于是可
8、得出复数z的虚部。【详解】z=1+i1-i=1+i21-i1+i【点睛】本题考查复数的概念,解决复数问题,一般利用复数的四则运算律将复数表示为一把形式,考查计算能力,属于基础题。3、B【解析】逐个分析,判断正误将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;设有一个回归方程,变量增加个单位时,平均减少个单位;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;服从正态分布,则位于区域内的概率为;在线性回归分析中,为的模型比为的模型拟合的效果好【详解】将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;设有一个回归方程
9、,变量增加个单位时,平均减少个单位,正确;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,错误;服从正态分布,则位于区域内的概率为,错误;在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【点睛】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题4、D【解析】由平移后,得,再由图象关于轴对称,得,解之即可.【详解】将函数的图象向左平移个单位,得图象关于轴对称,即又时满足要求.故选:D【点睛】本题考查了三角函数图象的平移和函数的对称性,属于中档题.5、B【解析】若A户家庭的李生姐妹乘坐甲车,即剩下的两个小孩来
10、自其他的2个家庭,有种方法.若A户家庭的李生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有.所以共有12+12=24种方法.本题选择B选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法6、C【解析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab0,所以a,b同号.
11、对于,由绝对值三角不等式得,所以是正确的;对于,当a,b同号时,所以是错误的;对于,假设a=3,b=2,所以是错误的;对于,由绝对值三角不等式得,所以是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.7、A【解析】画出的图像,有3个零点等价于有3个交点。【详解】有3个零点等价于有3个交点记则过原点作的切线,有3个零点等价于有3个交点记则过原点作的切线,设切点为则切线方程为:,又切线过原点,即,将,代入解得,所以切线斜率所以【点睛】本题考查根的存在性及根的个数判断,
12、考查了函数零点个数的问题,属于中档题。8、B【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案【详解】,复数的虚部是1故选B【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.9、C【解析】运用等差数列的性质求得公差d,再运用通项公式解得首项即可【详解】由题意知,所以.故选C.【点睛】本题考查等差数列的通项公式的运用,等差数列的性质,考查运算能力,属
13、于基础题10、D【解析】3a+2b+0c=2即3a+2b=2,所以,因此11、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.12、D【解析】试题分析:由图可知各月的平均最低气温都在0以上,A正确;由图可知在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正
14、确;由图可知平均最高气温高于20的月份有7,8两个月,所以不正确故选D【考点】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可得出,从而得出m140,解出m即可【详解】;m140;m1故答案为1【点睛】考查直线的方向向量的概念,以及平行向量的坐标关系14、【解析】先求得 的最小值,为此作差,确定的单调性,得最小,然后解不等式即可。【详解】设 ,所以,递增,最小值;于是有,所以,所以,由且,所以,所以
15、,又因为,所以.故答案为:。【点睛】本题考查不等式恒成立问题,解题方法是转化为求函数的最值,本题不等式左边作为自然数的函数,可以看作是数列的项,因此可用研究数列单调性的方法来研究其单调性,即作差,由差的正负确定数列的增减,从而确定最小值15、【解析】设点P的坐标为,代入椭圆方程,运用直线的斜率公式,化简整理,即可得到所求离心率【详解】设点P的坐标为由题意,有,由A(a,0),B(a,0),得,由,可得,代入并整理得由于,故,于是,椭圆的离心率故答案为:【点睛】本题考查椭圆的方程和性质,考查椭圆离心率的求法,是中档题求椭圆的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据
16、一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).16、【解析】利用指数和对数运算,化简所求表达式.【详解】原式.故答案为:【点睛】本小题主要考查指数和对数运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)由题得,再利用频率和为1求x的值.(2)先求出的可能取值为1,2,3,再求其对应的概率,再列分布列求期望.详解:(1)由题意可知,样本容量. (2)由题意可知,高度在80,90)内的株数为5,高度在90,100内的株数为2,共
17、7株.抽取的3株中高度在80,90)内的株数的可能取值为1,2,3,则, 123故点睛:(1)本题主要考查频率分布直方图中的频数频率等的计算,考查离散型随机变量的分布列和期望,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2) 为的均值或数学期望,简称期望,求期望的关键是求随机变量的概率.18、(1);(2)见解析.【解析】分析:(1)由题意得,即可求出答案;(2)设直线的方程为联立直线方程与椭圆方程,由韦达定理表述出,又,化简整理即可.详解:(1)的面积为,即.又椭圆的四个顶点围成的菱形的面积为,即.,的方程为.(2)由题意可知,点为的中点,则.设直线的方程为,联立,可得,设,则
18、函数在上单调递减,当时,取得最大值.点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解(2)面积问题常采用S底高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底有时根据所研究三角形的位置,灵活选择其面积表达形式若求多边形的面积问题,常转化为三角形的面积后进行求解(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用19、(1)(2)(3)存在等
19、差数列满足题意,【解析】(1)根据常数列代入其值得解; (2)根据等比数列和用赋值法解决二项式展开式的相关问题求解; (3)对于开放性的问题先假设存在等差数列,再推出是否有恒成立的结论存在,从而得结论.【详解】解:(1)为常数列,.(2)为公比为2的等比数列,.故.(3)假设存在等差数列,使得对一切都成立,设公差为,则相加得.恒成立,即恒成立,故能为等差数列,使得对一切都成立,它的通项公式为【点睛】本题关键在于观察所求式子的特征运用二项式展开式中的赋值法的思想,属于难度题.20、 () 见解析() .【解析】试题分析:(1)根据已知函数求出定义域,则为已知函数所求出的x的范围的子集,再利用所提
20、供的值域得出m1,n1的要求,从而说明m3;(2)根据复合函数的单调性法则,由于对数的底数0a1,以及的单调性判断出原函数f(x)在上为增函数,根据已知定义域和值域及函数的单调性,写出x值与y值的对应关系式,得出列方程组,把问题转化为一元二次方程存在两个大于3的实根问题,最后利用根的分布条件列出不等式组,解出a的范围.试题解析:() ,又因为函数的定义域,可得或,而函数的值域为,由对数函数的性质知,() 在区间上递增,又因为即单调递减的函数.即有两个大于3的实数根, .【点睛】(1)处理有关集合的包含关系问题,无限数集一般使用数轴作为工具,可以直观画出集合的包含关系,常借助端点数值的大小关系满足集合的要求;(2)根据函数的单调性及函数的定义域和值域,可以得出自变量与函数值的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年乌海小型客运从业资格证理论考试题
- 吉首大学《国际贸易实务A》2021-2022学年第一学期期末试卷
- 《机械设计基础》-试卷9
- 吉林艺术学院《图案与装饰》2021-2022学年第一学期期末试卷
- 浙江省2023年中考数学一轮复习:数据分析初步 练习题
- 2024年公园铺砖工程合同范本
- 2024年大学生兼职保密协议书模板
- 吉林师范大学《西方音乐史与名作欣赏Ⅱ》2021-2022学年第一学期期末试卷
- 软件服务许可使用协议书范文范本
- 【初中数学】求代数式的值第1课时直接求代数式的值 2024-2025学年人教版七年级数学上册
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 大语言模型赋能自动化测试实践、挑战与展望-复旦大学(董震)
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
评论
0/150
提交评论