2022年安徽卓越县中联盟高三最后一卷数学试卷含解析_第1页
2022年安徽卓越县中联盟高三最后一卷数学试卷含解析_第2页
2022年安徽卓越县中联盟高三最后一卷数学试卷含解析_第3页
2022年安徽卓越县中联盟高三最后一卷数学试卷含解析_第4页
2022年安徽卓越县中联盟高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD2已知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件3若集合,则=( )ABCD4已知双曲线的左、右焦

2、点分别为,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD5是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD6设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7等差数列中,则数列前6项和为()A18B24C36D728已知函数,对任意的,当时,则下列判断正确的是( )AB函数在上递增C函数的一条对称轴是D函数的一个对称中心是9用数学归纳法证明1+2+3+n2=n4Ak2+1Ck2+110已知双曲线的右焦点为,过的直线交双曲线

3、的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD11在区间上随机取一个数,使直线与圆相交的概率为( )ABCD12如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图则下列结论中表述不正确的是( )A从2000年至2016年,该地区环境基础设施投资额逐年增加;B2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的

4、线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.二、填空题:本题共4小题,每小题5分,共20分。13若随机变量的分布列如表所示,则_,_-10114的展开式中,项的系数是_15圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为_.16已知内角的对边分别为外接圆的面积为,则的面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程

5、为,连接并延长交于,求的最大值.18(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.19(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式20(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,(e是自然对数的底数).(1)求数列,的通项公式;(2)求数列的前n项和.21(12分)已知点P在抛物线上,且点P的横坐标为2,以

6、P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值22(10分)如图,在四棱锥中,平面,为的中点(1)求证:平面;(2)求二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.2D【解析】,不能得到, 成立也不能推出,即可得到

7、答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.3C【解析】试题分析:化简集合故选C考点:集合的运算4C【解析】由双曲线定义得,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等

8、知识,是一道中档题.5B【解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【点睛】考查线面

9、所成的角的求法,及正切值为定值时的情况,属于中等题6C【解析】作出韦恩图,数形结合,即可得出结论.【详解】如图所示,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.7C【解析】由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】等差数列中,即,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.8D【解析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,函数, 对于A,故A错误;对于B,由,解

10、得,故B错误;对于C,当时,故C错误; 对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.9C【解析】首先分析题目求用数学归纳法证明1+1+3+n1=n4【详解】当n=k时,等式左端=1+1+k1,当n=k+1时,等式左端=1+1+k1+k1+1+k1+1+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+(k+1)1故选:C【点睛】本题主要考查数学归纳法,属于中档题./10B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【详解】双曲线1(

11、ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题11C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.12D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,

12、投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.【详解】由题意可知,解得(舍去)或.则,则,由方差的计算性质得.【点睛】本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力.14240【解析】利用二项式展开式

13、的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.15【解析】由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程【详解】设圆的半径为,由题意可得,所以,由题意设圆心,由题意可得,由直线与圆相切可得,所以,而,所以,即,解得,所以的最大值为2,当且仅当时取等号,可得,所以圆心坐标为:,半径为,所以圆的标准方程为:.故答案为:【点睛】本题考查直线与圆的位置关系及均值不等

14、式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.16【解析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积【详解】设外接圆半径为,则,由正弦定理,得,故答案为:【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)设的极坐标为,在中,有,即可得结果;(2)设射线:,圆的极坐标方程为,联立两个方程,可求出,联立可得,则计算可得,利用三角函数的

15、性质可得最值.【详解】(1)设的极坐标为,在中,有,点的轨迹的极坐标方程为;(2)设射线:,圆的极坐标方程为,由得:,由得:,当,即时,的最大值为.【点睛】本题考查极坐标方程的应用,考查三角函数性质的应用,是中档题.18(1)(2)证明见解析【解析】(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【详解】(1)由可得,即,所以,解得,(2)当时,,当时,综上,由可得递增,时;所以,综上:故.【点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.19(1),(2)【解析】(1)根据机器

16、人的进行规律可确定、的值;(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.【详解】解:(1),(2)设为沿轴正方向走的步数(每一步长度为1),则反方向也需要走步才能回到轴上,所以,1,2,(其中为不超过的最大整数)总共走步,首先任选步沿轴正方向走,再在剩下的步中选步沿轴负方向走,最后剩下的每一步都有两种选择(向上或向下),即 等价于求中含项的系数,为其中含项的系数为 故【点睛】本题考查组合数、二项式定理

17、,考查学生的逻辑推理能力,推理论证能力以及分类讨论的思想.20(1),(2)【解析】(1)当时,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得,再利用错位相减法求解即可.【详解】解:(1)因为,当时,解得;当时,有,由得,又,所以,即数列是首项为1,公差为1的等差数列,故,又因为,且,取自然对数得,所以,又因为,所以是以1为首项,以2为公比的等比数列,所以,即(2)由(1)知,所以,减去得:,所以【点睛】本题考查由与的关系求通项公式,考查错位相减法求数列的和.21 (1) (2)4【解析】(

18、1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可【详解】(1)将点P横坐标代入中,求得,P(2,),点P到准线的距离为,解得,抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,由,可得,又,即,把代入得,则【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题22(1)见解析;(2)【解析】(1) 取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2) 以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论