2022届河南省林州分校林虑高三下学期第六次检测数学试卷含解析_第1页
2022届河南省林州分校林虑高三下学期第六次检测数学试卷含解析_第2页
2022届河南省林州分校林虑高三下学期第六次检测数学试卷含解析_第3页
2022届河南省林州分校林虑高三下学期第六次检测数学试卷含解析_第4页
2022届河南省林州分校林虑高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1设集合则( )ABCD2正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B21C12D63本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A72种B144种C288种D360种4已知为虚数单位,若复数,则ABCD5如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2

3、月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格6新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B2016年我国

4、数字出版业营收超过2012年我国数字出版业营收的2倍C2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D2016年我国数字出版营收占新闻出版营收的比例未超过三分之一7近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;可以估计不足的大学生使用主要玩游戏;可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为( )ABCD8已知,则( )ABC

5、D9已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD10我国古代有着辉煌的数学研究成果,其中的周髀算经、九章算术、海岛算经、孙子算经、缉古算经,有丰富多彩的内容,是了解我国古代数学的重要文献这5部专著中有3部产生于汉、魏、晋、南北朝时期某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )ABCD11已知是虚数单位,则复数( )ABC2D12复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小

6、题,每小题5分,共20分。13若关于的不等式在时恒成立,则实数的取值范围是_14已知实数,满足,则的最大值为_.15若关于的不等式在上恒成立,则的最大值为_16设实数x,y满足,则点表示的区域面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M18(12分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数

7、,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.19(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟)若用时不超过(分钟),则称这个工人为优秀员工(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望20(12分)已知变换将平面上的点,分别变换为点,设变换对应的矩阵为(1)求矩阵;(2)求矩阵的特征值21(12分)如图,在正三棱柱中,分别为,的

8、中点(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值22(10分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.2B【解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.3B【解析

9、】利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题4B【解析】因为,所以,故选B5D【解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D

10、【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.6C【解析】通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.7C【解析】根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断的正误;计算使用主要玩游戏的大学生所占的比例,可判断的正误;计算使用主要找人聊天的大学生所占的比例,可判断的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以正确;使用主要玩游戏的人数

11、为,而调查的总人数为,故超过的大学生使用主要玩游戏,所以错误;使用主要找人聊天的大学生人数为,因为,所以正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.8D【解析】分别解出集合然后求并集.【详解】解:, 故选:D【点睛】考查集合的并集运算,基础题.9B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B

12、【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.10D【解析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】周髀算经、九章算术、海岛算经、孙子算经、缉古算经,这5部专著中有3部产生于汉、魏、晋、南北朝时期记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中

13、至少有一部是汉、魏、晋、南北朝时期专著的概率为故选D【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.11A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.12D【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标得结论【详解

14、】,对应点为,在第四象限故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复数的运算法则是解题关键二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用对数函数的单调性,将不等式去掉对数符号,再依据分离参数法,转化成求构造函数最值问题,进而求得的取值范围。【详解】由 得,两边同除以,得到,设,由函数 在上递减,所以,故实数的取值范围是。【点睛】本题主要考查对数函数的单调性,以及恒成立问题的常规解法分离参数法。14【解析】画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理

15、解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.15【解析】分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研究,可解,【详解】令;当时,不合题意;当时,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,则,即.当时,当时,则.设,则.当时,;当时,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为: 【点睛】本题考查不等式恒成立问题. 不等式

16、恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围利用导数解决此类问题可以运用分离参数法; 如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解16【解析】先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)p=4;(2)OA【解析】试题分析:(1

17、)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分M所以y1-p所以4-(2+p2)x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,式两边同乘x2得:x即:16x由得:x2x3即:16(x2+所以OA考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直

18、线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p218(1)函数与的图象在区间上有交点;证明见解析;(2)且;【解析】(1)令,结合函数零点的判定定理判断即可;设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可【详解】解:(1)当时,函数,令,则,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,

19、令,所以,故函数在和上单调递增,又函数在时,故方程有唯一解,又,故不存在,即证;(2)由得,令,则,当时,递减,故当时,递增,当时,递减,故在处取得极大值,不合题意;时,则在递减,在,递增,当时,故在递减,可得当时,当时,易证,令,令,故,则,故在递增,则,即时,故在,内存在,使得,故在,上递减,在,递增,故在处取得极小值由(1)知,故在递减,在递增,故时,递增,不合题意;当时,当,时,递减,当时,递增,故在处取极小值,符合题意,综上,实数的范围是且【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题19(1)43,47;(2)分布列见解析,.【解析】(

20、1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,的分布列如下: 故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.20(1)(2)1或6【解析】(1)设,根据变换可得关于的方程,解方程即可得到答案;(2)求出特征多项式,再解方程,即可得答案;【详解】(1)设,则,即,解得,则(2)设矩阵的特征多项式为,可得,令,可得或【点睛】本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论