2021-2022学年河南省天一大联考“顶尖计划”高三下学期第一次联考数学试卷含解析_第1页
2021-2022学年河南省天一大联考“顶尖计划”高三下学期第一次联考数学试卷含解析_第2页
2021-2022学年河南省天一大联考“顶尖计划”高三下学期第一次联考数学试卷含解析_第3页
2021-2022学年河南省天一大联考“顶尖计划”高三下学期第一次联考数学试卷含解析_第4页
2021-2022学年河南省天一大联考“顶尖计划”高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的

2、,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )ABCD2在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列3已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABCD4如图,在中,是上一点,若,则实数的值为( )ABCD5设等差数列的前n项和为,若,则( )ABC7D26聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终

3、不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1207运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )ABCD8已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D259已知集合,则( )ABCD10已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2

4、018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元11复数的模为( )AB1C2D12设函数定义域为全体实数,令有以下6个论断:是奇函数时,是奇函数;是偶函数时,是奇函数;是偶函数时,是偶函数;是奇函数时,是偶函数是偶函数;对任意的实数,那么正确论断的编号是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则实数m的值是_14已知数列满足对任意,若,则数列的通项公式_15在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为_.16已知为等

5、差数列,为其前n项和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.18(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.19(12分)在角中,角A、B、C的对边分别是a、b、c,若(1)求

6、角A;(2)若的面积为,求的周长20(12分)如图,在三棱柱中,平面,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22(10分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,求的面积最小值.参考答案一

7、、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.2C【解析】由等差数列的性质、同角三角函数的关系以及两

8、角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列, 正弦定理得,由余弦定理得 ,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到3B【解析】此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图

9、(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.4C【解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,又,所以,(1m),又t,所以,解得m,t,故选C【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.5B【解析】根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果【详解】因为,所以,所以,所以,故选:B【点睛

10、】本题主要考查等差数列的性质及前项和公式,属于基础题6C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.7B【解析】由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,故判断框中应填?故选:【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题8D【解析】由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单

11、调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.9A【解析】考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.10D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以

12、月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.11D【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解【详解】解:,复数的模为故选:D【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题12A【解析】根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:

13、,则,此时,故错误;故正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】根据即可得出,从而求出m的值【详解】解:;m1故答案为:1【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算14【解析】由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.15【解析】先求出所有的基本事件个

14、数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.【详解】一次随机抽取其中的三张,所有基本事件为:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,因此“抽取的三张卡片编号之和是偶数”的概率为:.故答案为:.【点睛】本题考查了古典概型及其概率计算公式,属于基础题.161【解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已

15、知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时

16、,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题18(1)(2)【解析】(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,即,所以对恒成立,得;当时,即,所以对任意恒成立,得,综上,.【点

17、睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.19(1);(2)1.【解析】(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A(0,),可求A=(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解ABC的周长的值【详解】(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB0,所以sinA=cosA,即:tanA=,因为A(0,),所以A=;(2)由(1)可知A=,且a=5,又由ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2

18、-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以ABC的周长a+b+c=5+7=1【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题20(1) (2)【解析】试题分析:(1)因为ABAC,A1B平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论