2021-2022学年河南省信阳市第六高考考前模拟数学试题含解析_第1页
2021-2022学年河南省信阳市第六高考考前模拟数学试题含解析_第2页
2021-2022学年河南省信阳市第六高考考前模拟数学试题含解析_第3页
2021-2022学年河南省信阳市第六高考考前模拟数学试题含解析_第4页
2021-2022学年河南省信阳市第六高考考前模拟数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580

2、779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D122双曲线的一条渐近线方程为,那么它的离心率为( )ABCD3若函数满足,且,则的最小值是( )ABCD4如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD5已知角的终边经过点P(),则sin()=ABCD6已知实数,满足约束条件,则的取值范围是( )ABCD7如图,平面四边形中,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )ABCD8元代数学家朱世杰的数学名著

3、算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的( )A3B4C5D69我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的体积公式).A2寸B3寸C4寸D5寸10设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相

4、等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD11已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD12已知为定义在上的偶函数,当时,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13实数满足,则的最大值为_14某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为_元,租船的总费用共有_种可能.15某部队在训练之余,由同一场地训练的甲乙丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为_.16某商场一年中各月份的收入、支出情况的统计如图所示

5、,下列说法中正确的是_.2至3月份的收入的变化率与11至12月份的收入的变化率相同;支出最高值与支出最低值的比是6:1;第三季度平均收入为50万元;利润最高的月份是2月份三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.18(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等

6、差数列;(2)设,求的前100项和19(12分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围20(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值21(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项(1)证明:数列是等差数列; (2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有22(10分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

7、要求的。1D【解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.2D【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.3A【解析】由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【详解】函数满足,即,

8、即,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.4A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.5A【解析】由题意可得三角函数

9、的定义可知:,则:本题选择A选项.6B【解析】画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.7A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.

10、【详解】由,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.8B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选

11、B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).9B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.10D【解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概

12、率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.11A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.12D【解析】判断,利用函数的奇偶性代入计算得到答

13、案.【详解】,故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值由同理,取最大值故答案为: 【点睛】本题考查线性规划的线性目标函数的最优解问题. 线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;

14、若可行域不是封闭图形还是需要借助截距的几何意义来求最值.14360 10 【解析】列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案

15、为:360,10.【点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.15【解析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【详解】首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.故答案为:.【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.16【解析】通过图片信息直接观察,计算,找出答案即可【详解】对于

16、,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确对于,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确对于,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确对于,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是806020万元,错误故答案为【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析,【解析】(1)根据题意设出事件,列出概率,运用公式求解;(

17、2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,.所以X的分布表为:X012P所以.【点睛】本题是一道考查概率和期望的常考题型.18(1)证明见解析; (2).【解析】(1)利用已知条件化简出,当时,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和

18、【详解】解:(1)由题意知,即,当时,由式可得;又时,有,代入式得,整理得,是首项为1,公差为1的等差数列(2)由(1)可得,是各项都为正数,又,则,即:.的前100项和【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.19(1)增区间为,减区间为;(2).【解析】(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围【详解】(1)当时,则,当时,则,此时,函数为减函数;当时,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(

19、2),则,.当时,即当时,由,得,此时,函数为增函数;由,得,此时,函数为减函数.则,不合乎题意;当时,即时,.不妨设,其中,令,则或.(i)当时,当时,此时,函数为增函数;当时,此时,函数为减函数;当时,此时,函数为增函数.此时,而,构造函数,则,所以,函数在区间上单调递增,则,即当时,所以,.,符合题意;当时,函数在上为增函数,符合题意;当时,同理可得函数在上单调递增,在上单调递减,在上单调递增,此时,则,解得.综上所述,实数的取值范围是.【点睛】本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.20(1);(2)见解析【解析】将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】()由题意得 原式 的最小正周期为. (),. 当,即时,;当,即时, . 综上,得时,取得最小值为0;当时,取得最大值为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论