版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知纯虚数满足,其中为虚数单位,则实数等于( )AB1CD22已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD3博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2CP1+P2DP1P24若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD5中,为的中点,则( )ABCD26已知,则的值等于( )
3、ABCD7已知实数满足则的最大值为( )A2BC1D08关于函数,有下述三个结论:函数的一个周期为;函数在上单调递增;函数的值域为.其中所有正确结论的编号是( )ABCD9函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD10在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是( )ABCD11 “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影
4、部分据此可估计阴影部分的面积是( )ABC10D12已知函数,满足对任意的实数,都有成立,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则_.14如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为_.15某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,得到的频率分布直方图如图所示,则下列说法中正确的是_(填序号);这名学生中数学成绩在分以下的人数为;这名学生数学成绩的中位数约为;这名学生数学成绩的平均数为16展
5、开式中,含项的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.18(12分)在四棱椎中,四边形为菱形,分别为,中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.19(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由20(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物
6、线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程21(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程22(10分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是
7、纯虚数求解参数值,难度较易.若复数为纯虚数,则有.2D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.3C【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1
8、;所以P1+P2故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.4C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.5D【解析】在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.6A【解析】由
9、余弦公式的二倍角可得,再由诱导公式有,所以【详解】由余弦公式的二倍角展开式有又故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题7B【解析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.8C【解析】用周期函数的定义验证.当时,再利用单调性判断.根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故错误;当时,所以,所以在上单调递增,故正确;函数的值域等价于函数的值域,易知,故当时,故正确.故选:C.【点睛】本题考查三
10、角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.9D【解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.10B【解析】由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.【详解】由,得,.
11、设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,.故选:【点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.11D【解析】直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.12B【解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【点睛】本题考查利用分段函数的单调
12、性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】取基向量,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得【详解】如图:设,又,且存在实数使得,故答案为:【点睛】本题考查了平面向量数量积的性质及其运算,属中档题14【解析】要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角【详解】取的中点E,连AE, ,易证,为异面直线与所成角,设等边三角形边长为,易算得在故答
13、案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求15【解析】由频率分布直方图可知,解得,故不正确;这名学生中数学成绩在分以下的人数为,故正确;设这名学生数学成绩的中位数为,则,解得,故正确;这名学生数学成绩的平均数为,故不正确综上,说法正确的序号是162【解析】变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
14、7(1)(2)证明见解析【解析】(1)在上有解,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【详解】(1)由题可得,在上有解,则,令,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,则,故.【点睛】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.18(1)证明见解析;(2).【解析】(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向
15、量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,所以,又,所以,又,所以平面,所以,又因为是菱形,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,以点为坐标原点,建立如图所示的空间直角坐标系,则,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法向量为,则:,据此可得平面的一个法向量为,平面与平面所成锐二面角的余弦值.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.19(1)证明见解析 (2)存在,为中点【解析】(1)证明面,即证明平面平面;(2)以为坐标原点
16、,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系利用向量方法得,解得,所以为中点【详解】(1)由于为中点,又,故,所以为直角三角形且,即又因为面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四边形为矩形,则两两垂直以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点【点睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.20(1);(2)点在定直线上【解析】(1)设出
17、直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去)所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为令,即交轴于点坐标为,所以, ,设点坐标为,则,所以点在定直线上【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题21();()【解析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:()过点的直线方程为,则原点到直线的距离,由,得,解得离心率.()由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度环保型PHC管桩生产与施工一体化合同2篇
- 二零二五版汽车售后服务合同协议2篇
- 二零二五版医疗器械样品采购及临床试验合同3篇
- 二零二五年度特种玻璃进出口贸易合同样本2篇
- 基于云计算的医疗信息平台建设合同(2025年度)3篇
- 二零二五版CNG车辆进出口贸易合同2篇
- 二零二五年度豪华邮轮船员聘用及综合服务合同3篇
- 二零二五版家庭护理服务与保险产品对接合同2篇
- 二零二五年电子商务产业园杭州电子商务法律风险防范合同3篇
- 二零二五年防水材料研发与市场拓展合同3篇
- GB/T 18476-2001流体输送用聚烯烃管材耐裂纹扩展的测定切口管材裂纹慢速增长的试验方法(切口试验)
- GA 1551.5-2019石油石化系统治安反恐防范要求第5部分:运输企业
- 拘留所教育课件02
- 冲压生产的品质保障
- 《肾脏的结构和功能》课件
- 2023年湖南联通校园招聘笔试题库及答案解析
- 上海市徐汇区、金山区、松江区2023届高一上数学期末统考试题含解析
- 护士事业单位工作人员年度考核登记表
- 天津市新版就业、劳动合同登记名册
- 产科操作技术规范范本
- 人教版八年级上册地理全册单元测试卷(含期中期末试卷及答案)
评论
0/150
提交评论