




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.2.函数的单调递减区间为()A. B.C. D.3.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或4.若,则的最小值为A.-1 B.3C.-3 D.15.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或6.已知全集,则正确表示集合和关系的韦恩图是A. B.C. D.7.已知,都为单位向量,且,夹角的余弦值是,则A. B.C. D.8.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.9.已知函数,则()A.0 B.1C.2 D.1010.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0二、填空题:本大题共6小题,每小题5分,共30分。11._____.12.若幂函数在区间上是减函数,则整数________13.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.14.=_______.15.已知函数,则______.16.下列五个结论:集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;函数的定义域为,则函数的定义域也是;存在实数,使得成立;是函数的对称轴方程;曲线和直线的公共点个数为m,则m不可能为1;其中正确有______写出所有正确的序号三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过直线与的交点.(1)点到直线的距离为3,求直线的方程;(2)求点到直线的距离的最大值,并求距离最大时的直线的方程18.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.19.计算(1);(2)计算:;(3)已知,求.20.求值:(1);(2)21.已知.(1)求,的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【点睛】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.2、A【解析】解不等式,,即可得答案.【详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.3、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.4、A【解析】分析:代数式可以配凑成,因,故可以利用基本不等式直接求最小值.详解:,当且仅当时等号成立,故选A.点睛:利用基本不等式求最值时,要注意“一正、二定、三相等”,有时题设给定的代数式中没有和为定值或积为定值的形式,我们需要对代数式变形,使得变形后的代数式有和为定值或者积为定值.特别要注意检验等号成立的条件是否满足.5、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.6、B【解析】∵集合∴集合∵集合∴故选B7、D【解析】利用,结合数量积的定义可求得的平方的值,再开方即可【详解】依题意,,故选D【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.8、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D9、B【解析】根据分段函数的解析式直接计算即可.【详解】.故选:B.10、C【解析】两圆公共弦的垂直平分线的方程即为两圆圆心所在直线的方程,求出两圆的圆心,从而可得答案.【详解】解:AB的垂直平分线的方程即为两圆圆心所在直线的方程,圆x2+y2-4x+6y=0的圆心为,圆x2+y2-6x=0的圆心为,则两圆圆心所在直线的方程为,即3x-y-9=0.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题12、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:213、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为14、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.15、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.16、【解析】由,,结合映射的定义可判断;由由,解不等式可判断;由辅助角公式和正弦函数的值域,可判断;由正弦函数的对称轴,可判断;由的图象可判断交点个数,可判断【详解】由于,,B中无元素对应,故错误;函数的定义域为,由,可得,则函数的定义域也是,故正确;由于的最大值为,,故不正确;由为最小值,是函数的对称轴方程,故正确;曲线和直线的公共点个数为m,如图所示,m可能为0,2,3,4,则m不可能为1,故正确,故答案为【点睛】本题主要考查函数的定义域、值域和对称性、图象交点个数,考查运算能力和推理能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x=2或4x-3y-5=0(2)见解析【解析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出的值,得出直线的方程;(2)先求出交点P的坐标,由几何的方法求出距离的最大值【详解】(1)因为经过两已知直线交点直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,点到直线的距离为3,所以=3,解得λ=或λ=2,所以直线l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立)所以dmax=|PA|=此时直线l的方程为:3x-y-5=018、(1)答案见解析(2)答案见解析【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【详解】图象如图所示(2)定义域为或或,增区间为,减区间为,,,,值域为19、(1);(2);(3)【解析】(1)(2)根据分数指数幂的定义,及指数的运算性质,代入计算可得答案;(3)由,可得,即,将所求平方,代入即可得答案【详解】(1);(2)(3)∵=3,∴()2=x2+x﹣2+2=9,∴x2+x﹣2=7则()2=x2+x﹣2﹣2=5,∴【点睛】此题主要考查指对幂四则运算,熟练掌握指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年危险化学品安全作业特种作业操作证考试试卷(安全生产培训)试题
- 2025年安全生产考试题库(风险分级管控)专项模拟试题卷
- 外研版九年级英语上学期社会实践计划
- 科研机构安全管理职责总结
- 2025中考数学复习复习反馈机制计划
- 公共场所环境卫生管理制度与措施
- 立德树人好教师的自我反思与提升
- 编程兴趣小组线上学习计划
- 办公楼消防设备维护保养计划
- 2025年开放银行生态构建与合作模式创新下的金融科技政策分析报告
- 北师大版四年级下册5-6《猜数游戏》分层作业
- 国家自然科学基金范例国家自然科学基金项目合作协议书模板
- 政务服务大厅管理规范-政务服务大厅建设
- 中产人群分析报告
- 宠物血液库市场营销策划
- 团播主持人协议
- 《微生物学肠道菌》课件
- 急需学科专业引导发展清单
- 江苏省无锡市2024年中考模拟数学试题附答案
- 美容科电疗美容治疗技术操作规范
- 第一节-接入互联网-教案
评论
0/150
提交评论