版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初等数论第二章课件第1页,共55页,2022年,5月20日,13点35分,星期一对于高于二次的多元不定方程,人们知道得不多。 另一方面,不定方程与数学的其他分支如代数数论、 代数几何、组合数学等有着紧密的联系, 在有限群论在有限群论和最优设计中也常常提出不定方程的问题, 这就使得不定方程这一古老的分支继续吸引着许多数学家的注意,成为数论中重要的研究课题之一。第2页,共55页,2022年,5月20日,13点35分,星期一第一节 二元一次不定方程研究不定方程一般需要要解决以下三个问题:有解时决定解的个数。判断何时有解。求出所有的解。本节讨论能直接利用整除理论来判定是否有解,以及有解时求出其全部解的
2、最简单的不定方程二元一次不定方程。第3页,共55页,2022年,5月20日,13点35分,星期一第4页,共55页,2022年,5月20日,13点35分,星期一第5页,共55页,2022年,5月20日,13点35分,星期一注:定理的证明过程实际给出求解方程(1)的方法:第6页,共55页,2022年,5月20日,13点35分,星期一第7页,共55页,2022年,5月20日,13点35分,星期一第8页,共55页,2022年,5月20日,13点35分,星期一第9页,共55页,2022年,5月20日,13点35分,星期一注:利用辗转相除法求(a,b)时,前提为a,b为正整数,且a大于b,因此求解此方程时
3、可以考虑用变量替换。第10页,共55页,2022年,5月20日,13点35分,星期一第11页,共55页,2022年,5月20日,13点35分,星期一3、下面通过具体例子介绍一种判定方程是否有解,及其求出其解的直接算法整数分离法第12页,共55页,2022年,5月20日,13点35分,星期一第13页,共55页,2022年,5月20日,13点35分,星期一第14页,共55页,2022年,5月20日,13点35分,星期一或先求出原方程的一个特解,再给出一切整数解。注:这种解不定方程的算法实际上是对整个不定方程用辗转相除法,依次化为等价的不定方程,直至得到一个变量的系数为正负1的方程为止。这样的不定方
4、程第15页,共55页,2022年,5月20日,13点35分,星期一可以直接解出。再依次反推上去,就得到原方程的通解。为了减少运算次数,在用带余除法时,总取绝对值最小余数。下面我们来讨论当二元一次不定方程(1)可解时,它的非负解和正解问题。由通解公式知这可归结为去确定参数t的值,使x,y均为非负或正。显见,当a,b异号时,不定方程(1)可解时总有无穷多组非负解或正解,理由是:第16页,共55页,2022年,5月20日,13点35分,星期一所以下面只讨论a,b均为正整数的情形,先来讨论非负解:第17页,共55页,2022年,5月20日,13点35分,星期一下面讨论正整数解:第18页,共55页,20
5、22年,5月20日,13点35分,星期一例7、求方程5x+3y=52的全部正整数解解:x=8,y=4是一组特解,方程的全部解为:x=8+3t,y=4-5t正整数解满足8+3t0,4-5t0第19页,共55页,2022年,5月20日,13点35分,星期一注:若只求方程正整数解的个数,可考虑以下不等式的整数解个数:第20页,共55页,2022年,5月20日,13点35分,星期一第二节 多元一次不定方程第21页,共55页,2022年,5月20日,13点35分,星期一第22页,共55页,2022年,5月20日,13点35分,星期一注:定理1的证明给出了n元一次不定方程的解法过程:即求解方程组(由n-1
6、个方程组成)第23页,共55页,2022年,5月20日,13点35分,星期一第24页,共55页,2022年,5月20日,13点35分,星期一第25页,共55页,2022年,5月20日,13点35分,星期一第26页,共55页,2022年,5月20日,13点35分,星期一解:原方程化为:第27页,共55页,2022年,5月20日,13点35分,星期一第28页,共55页,2022年,5月20日,13点35分,星期一进一步可求非负整数解:由通解公式给出非负整数解中m,k应满足第29页,共55页,2022年,5月20日,13点35分,星期一第30页,共55页,2022年,5月20日,13点35分,星期一
7、第三节 勾股数第31页,共55页,2022年,5月20日,13点35分,星期一第32页,共55页,2022年,5月20日,13点35分,星期一第33页,共55页,2022年,5月20日,13点35分,星期一第34页,共55页,2022年,5月20日,13点35分,星期一再证满足条件(2)的解都可以表成(3)的形式。第35页,共55页,2022年,5月20日,13点35分,星期一第36页,共55页,2022年,5月20日,13点35分,星期一第37页,共55页,2022年,5月20日,13点35分,星期一第38页,共55页,2022年,5月20日,13点35分,星期一例1、求一个边长为整数的直角
8、三角形,它的面积在数值上等于它的周长。第39页,共55页,2022年,5月20日,13点35分,星期一第40页,共55页,2022年,5月20日,13点35分,星期一例2、求不定方程(*)的满足条件0z26的全部互素的解。baxyz12345235121314158173472425第41页,共55页,2022年,5月20日,13点35分,星期一例3、求z=65的满足方程(*)的全部正整数解。第42页,共55页,2022年,5月20日,13点35分,星期一第43页,共55页,2022年,5月20日,13点35分,星期一例5、假定(x,y,z)是(*)的解,并且(x,y)=1,那么在x,y中有一
9、个是3的倍数,有一个是4的倍数,在x,y,z中有一个是5的倍数。第44页,共55页,2022年,5月20日,13点35分,星期一第45页,共55页,2022年,5月20日,13点35分,星期一注意:定理中所说的在x,y中有一个是3的倍数,有一个是4的倍数,并不是说在x,y中一个是3的倍数,另一个是4的倍数,很可能3的倍数与4的倍数是同一个数。如(5,12,13),又如(11,60,61)第46页,共55页,2022年,5月20日,13点35分,星期一第47页,共55页,2022年,5月20日,13点35分,星期一第48页,共55页,2022年,5月20日,13点35分,星期一第49页,共55页
10、,2022年,5月20日,13点35分,星期一3、无穷递降法1659年,法国数学家费马写信给他的一位朋友卡尔卡维,称自己创造了一种新的数学方法. 由于费马的信并没有发表, 人们一直无从了解他的这一方法. 直到 1879年,人们在荷兰莱顿大学图书馆惠更斯的手稿中发现了一篇论文,才知道这种方法就是无穷递降法.无穷递降法是证明某些不定方程无解时常用的一种方法.其证明模式大致是:先假设方程存在一个最小正整数解, 第50页,共55页,2022年,5月20日,13点35分,星期一然后在这个最小正整数解的基础上找到一个更小的构造某种无穷递降的过程, 再结合最小数原理得到矛盾,从而证明命题. 无穷递降法在解决问题过程中主要有两种表现形式:其一,由一组解出发通过构造得到另一组解,并且将这一过程递降下去,从而得出矛盾;其二,假定方程有正整数解,且存在最小的正 整数解,设法构造出方程的另一组解(比最小正整数解还要小),从而得到矛盾.无穷递降法的理论依据是最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 使用关系图掌握关键业务流程考核试卷
- 物业管理的客户关系管理考核试卷
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 应对极端天气的弹性管理策略考核试卷
- 南方糖业产业基地建设考核试卷
- 渔业行业协会组织与服务创新考核试卷
- DB11∕T 3014-2018 果蔬冷链物流操作规程
- 新入职员工礼仪培训方案设计
- 老师辞职报告(范文3篇)
- 鲁教版九年级化学下册全册教案
- 四川省地震灾区重大地质灾害治理工程资料全套表格
- 我国油菜生产机械化技术(-119)
- 2022年广西南宁市八年级上学期期末语文试卷
- 6.20.1遗传和变异的现象-2022-2023学年北师大版生物八年级上册同步课堂检测(word版 含答案)
- 卡培他滨消化道肿瘤用药策略ppt课件(PPT 35页)
- 三重一大流程图53872
- 孤独的小螃蟹ppt
- 物理人教版九年级全册《电路故障》教学设计
- 建设工程安全文明综合评价书
- 交通工程信号灯、标线及标牌施工方案
- 带压堵漏技术
评论
0/150
提交评论