版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE25 页 共 NUMPAGES25 页初中数学必背几何知识点总结归纳初中数学几何的知识点三角形知识点、概念总结1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。4. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。6. 高线、中线、角平分线的意义和做法7. 三角形的
2、稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。8. 三角形内角和定理:三角形三个内角的和等于180推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半9. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。10. 三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360。四边形(含多
3、边形)知识点、概念总结一、平行四边形的定义、性质及断定1. 两组对边平行的四边形是平行四边形。2. 性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3. 断定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4. 对称性:平行四边形是中心对称图形二、矩形的定义、性质及断定1. 定义:有一个角是直角的平行四边形叫做矩形2. 性质:矩形的四个角都是直角,矩形的对角线相等3. 断定:
4、(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4. 对称性:矩形是轴对称图形也是中心对称图形。三、菱形的定义、性质及断定1. 定义:有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2. s菱=争6(n、6分别为对角线长)3. 断定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形4. 对称性:菱形是轴对称图形也是中心
5、对称图形四、正方形定义、性质及断定1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2. 性质:(1)正方形四个角都是直角,四条边都相等(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形(4)正方形的对角线与边的夹角是45(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形3. 断定:(1)先断定一个四边形是矩形,再断定出有一组邻边相等(2)先断定一个四边形是菱形,再断定出有一个角是直角4. 对称性:正方形是轴对称图形也是中心对称图形五、梯形的定义、等腰梯形的性质及断定1. 定义:一组对
6、边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等3. 等腰梯形的断定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形4. 对称性:等腰梯形是轴对称图形六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。九、多边形1. 多边
7、形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。8. 公式
8、与性质多边形内角和公式:n边形的内角和等于(n-2)1809. 多边形外角和定理:n边形外角和等于n180-(n-2)180=360边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n180初中数学几何知识点归纳1、点,线,面点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状一样,侧面的形状都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图
9、,俯视图。多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成假设干个扇形。2、角线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。比较长短:两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的间隔 。角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。一
10、条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。假设两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:假设两条直线相交成直角,那么这两条直线互相垂直。互相垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线
11、可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的间隔 相等;断定定理:到线段2端点间隔 相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边间隔 相等的点性质定理:角平分线上的点到该角两边的间隔 相等断定定理:到角的两边间隔 相等的点在该角
12、的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质断定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线角:假设两个角的和是直角,那么称和两个角互为余角;假设两个角的和是平角,那么称这两个角互为补角。同角或等角的余角/补角相等。对顶角相等。同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。4、三角形三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。三角形三个内角的和等于180度。三角形分锐角三角形/直角三角形/钝角三角形。直角三角形的两个锐角互余。三角形
13、中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。三角形的三条角平分线交于一点,三条中线交于一点。从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。三角形的三条高所在的直线交于一点。图形的全等:全等图形的形状和大小都一样。两个可以重合的图形叫全等图形。全等三角形:全等三角形的对应边/角相等。条件:SSS、AAS、ASA、SAS、HL。勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。5、四边形平行四边形的性质:两组对边分别平行的四边形叫做平行四边形。平行
14、四边形不相邻的两个顶点连成的线段叫他的对角线。平行四边形的对边/对角相等。平行四边形的对角线互相平分。平行四边形的断定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。菱形:一组邻边相等的平行四边形是菱形。领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。断定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。矩形与正方形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等,四个角都是直角。对角线相等的平行四边形是矩形。正方形具有平行四边形,矩形,菱形的一切性质。一组邻边相等的矩形是正方形。梯形:一组对边平行而另一组对
15、边不平行的四边形叫梯形。两条腰相等的梯形叫等腰梯形。一条腰和底垂直的梯形叫做直角梯形。等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。多边形:N边形的内角和等于(N-2)180度。多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。中心对称图形:在平面内,一个图形绕某个点旋转180度,假设旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。中考数学几何知识点
16、总结线1.同角或等角的余角相等2.过一点有且只有一条直线和直线垂直3.过两点有且只有一条直线4.两点之间线段最短5.同角或等角的补角相等6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.假设两条直线都和第三条直线平行,这两条直线也互相平行角9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补三角形15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180
17、18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理有三边对应相等的两个三角形全等26.斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1在角的平分线上的点到这个角的两边的间隔 相等28.定理2到一个角的两边的间隔 一样的点,在这个角的平分线上29.角的平
18、分线是到角的两边间隔 相等的所有点的集合等腰三角形30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3等边三角形的各角都相等,并且每一个角都等于6034.等腰三角形的断定定理假设一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1三个角都相等的三角形是等边三角形36.推论2有一个角等于60的等腰三角形是等边三角形37.在直角三角形中,假设一个锐角等于30那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线
19、上的点和这条线段两个端点的间隔 相等40.逆定理和一条线段两个端点间隔 相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点间隔 相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2假设两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,假设它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理假设两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理假设三角形的三边长a、b、c有关系a
20、+b=c,那么这个三角形是直角三角形四边形48.定理四边形的内角和等于36049.四边形的外角和等于36050.多边形内角和定理n边形的内角的和等于(n-2)18051.推论任意多边的外角和等于36052.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形断定定理1两组对角分别相等的四边形是平行四边形57.平行四边形断定定理2两组对边分别相等的四边形是平行四边形58.平行四边形断定定理3对角线互相平分的四边形是平行四边形59.平行四边形断定定理4一组对
21、边平行相等的四边形是平行四边形矩形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形断定定理1有三个角是直角的四边形是矩形63.矩形断定定理2对角线相等的平行四边形是矩形菱形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(ab)267.菱形断定定理1四边都相等的四边形是菱形68.菱形断定定理2对角线互相垂直的平行四边形是菱形初中几何公式:正方形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直
22、平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理假设两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形断定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形等分78.平行线等分线段定理假设一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2
23、经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的根本性质假设a:b=c:d,那么ad=bc假设ad=bc,那么a:b=c:d84.(2)合比性质假设a/b=c/d,那么(ab)/b=(cd)/d85.(3)等比性质假设a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长
24、线),所得的对应线段成比例88.定理假设一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形断定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.断定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.断定定理3三边对应成比例,两三角形相似(SSS)95.定理假设一个直角三角形的斜边
25、和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆.圆是定点的间隔 等于定长的点的集合102.圆的内部可以看作是圆心的间隔 小于半径的点的集合103.圆的外部可以看作是圆心的间隔 大于半径的点的集合104.同圆或等圆的半径相等1
26、05.到定点的间隔 等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和线段两个端点的间隔 相等的点的轨迹,是着条线段的垂直平分线107.到角的两边间隔 相等的点的轨迹,是这个角的平分线108.到两条平行线间隔 相等的点的轨迹,是和这两条平行线平行且间隔 相等的一条直线109.定理不在同一直线上的三个点确定一条直线110.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111.推论1平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112.推论2圆的两条平行弦所夹的弧
27、相等113.圆是以圆心为对称中心的中心对称图形114.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115.推论在同圆或等圆中,假设两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116.定理一条弧所对的圆周角等于它所对的圆心角的一半117.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118.推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119.推论3假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- N1-Boc-2-2-iminodiethylamine-生命科学试剂-MCE
- 音乐基础学习通超星期末考试答案章节答案2024年
- Mupirocin-lithium-Standard-生命科学试剂-MCE
- 基于C#的WinForm程序设计学习通超星期末考试答案章节答案2024年
- 光学学习通超星期末考试答案章节答案2024年
- MIP-1095-RPS-001-生命科学试剂-MCE
- 传染病上报制度
- 立式半自动钻床课程设计
- 化工课程设计创新优化
- 生活类幼儿早教课程设计
- 医学课件:儿童牙外伤
- 2021新版营业执照英文翻译 (横版)
- 五年级语文上册第七单元【集体备课】
- 销售技术-迅达3000ap产品介绍
- 三维晶格的振动
- 我国油菜生产机械化技术(-119)
- 2022年广西南宁市八年级上学期期末语文试卷
- 6.20.1遗传和变异的现象-2022-2023学年北师大版生物八年级上册同步课堂检测(word版 含答案)
- 卡培他滨消化道肿瘤用药策略ppt课件(PPT 35页)
- 三重一大流程图53872
- 护理查房-急性肾小球肾炎患儿护理
评论
0/150
提交评论