版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每题4分,共48分)1已知二次函数y=-x2+2mx+2,当x-2Cm-2Dm-22把分式中的、都扩大倍,则分式的值( )A扩大倍B扩大倍C不变D缩小倍3对于不为零的两个实数a,b,如果规定:ab,那么函数y2x的图象大致是()ABCD4如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,函数y=(k0)的图象经过点B,则k的值为()A12B32C32D365如图,抛物线yx2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B下列说法:其中正确判断的序号是()抛物线与直线y3有且只有一个交点;若点M(2,y1),N(1,
3、y2),P(2,y3)在该函数图象上,则y1y2y3;将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y(x+1)2+1;在x轴上找一点D,使AD+BD的和最小,则最小值为ABCD6如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,则DE:EC=( )A2:5B2:3C3:5D3:27二次函数化为的形式,结果正确的是( )ABCD8已知反比例函数y,下列结论不正确的是()A图象必经过点(1,3)B若x1,则3y0C图象在第二、四象限内Dy随x的增大而增大9如图,O 中,弦 AB、CD 相交于点 P,A40,APD75,则B 的度数是( )A15B40C75D3
4、510如图,扇形AOB 中,半径OA2,AOB120,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )ABCD11将抛物线向右平移2个单位, 则所得抛物线的表达式为()ABCD12入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( )A5人B6人C4人D8人二、填空题(每题4分,共24分)13将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为 14如图,的直径垂直弦于点,且,则弦_15如果关于x的一元二次方程
5、(k+2)x23x+10有实数根,那么k的取值范围是_16如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数的图象经过点A、E,且,则_.17写出一个经过点(0,3)的二次函数:_18边长为4cm的正方形ABCD绕它的顶点A旋转180,顶点B所经过的路线长为(_)cm三、解答题(共78分)19(8分)解方程:x26x7=120(8分)从甲、乙、丙、丁4名同学中随机抽取环保志愿者求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中21(8分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小
6、力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.(1)画树状图或列表求出各人获胜的概率。(2)这个游戏公平吗?说说你的理由22(10分)如图,已知O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,EAB=ADB(1)求证:AE是O的切线;(2)已知点B是EF的中点,求证:EAFCBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长23(10分)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,求一次函数的表达式;若该商场获得利润为元,试写出利润与销售
7、单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?25(12分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD2m经测量,得到其它数据如图所示其中CAH37,DBH67,AB10m,请你根据以上数据计算GH的长(参考数据tan67, tan37)26学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A非常了解B
8、了解C知道一点D完全不知道将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率参考答案一、选择题(每题4分,共48分)1、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线 ,抛物线开口向下,当 时,y的值随x值的增大而增大
9、,当时,y的值随x值的增大而增大, ,故选:C【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.2、C【分析】依据分式的基本性质进行计算即可【详解】解:a、b都扩大3倍,分式的值不变故选:C【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键3、C【解析】先根据规定得出函数y2x的解析式,再利用一次函数与反比例函数的图象性质即可求解【详解】由题意,可得当2x,即x2时,y2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2x,即x2时,y,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在
10、第四象限时,0 x2,故B错误故选:C【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y2x的解析式是解题的关键4、B【解析】解:O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,OA=5,ABOC,点B的坐标为(8,4),函数y=(k0)的图象经过点B,4=,得k=32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.5、C【分析】根据抛物线的性质和平移,以及一动点到两定点距离之和最小问题的处理方
11、法,对选项进行逐一分析即可.【详解】抛物线的顶点,则抛物线与直线y3有且只有一个交点,正确,符合题意;抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x0或x1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1y3y2,故错误,不符合题意;yx2+2x+2(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y(x+1)2+1,正确,符合题意;点A关于x轴的对称点,连接AB交x轴于点D,则点D为所求,距离最小值为BD,正确,符合题意;故选:C【点睛】本题考查抛物线的性质、平移和距离的最值问题,其中一动点到两定点距离之和最小问题比
12、较巧妙,属综合中档题.6、B【详解】四边形ABCD是平行四边形,ABCDEAB=DEF,AFB=DFEDEFBAF,DE:AB=2:5AB=CD,DE:EC=2:3故选B7、A【分析】将选项展开后与原式对比即可;【详解】A:,故正确;B:,故错误;C:,故错误;D:,故错误;故选A.【点睛】本题主要考查了二次函数的三种形式,掌握二次函数的三种形式是解题的关键.8、D【解析】A.(1)3=3,图象必经过点(1,3),故正确;B.k=31时,3y0,故正确;D. 函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故错误故选D.9、D【分析】由,可知的度数,由圆周角定理可知,故
13、能求出B .【详解】,由圆周角定理可知(同弧所对的圆周角相等),在三角形BDP中,所以D选项是正确的.【点睛】本题主要考查圆周角定理的知识点,还考查了三角形内角和为的知识点,基础题不是很难.10、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=r2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.11、D【分析】根据“左加右减,上加下减”的规律直接求得【详解】因为抛物线y=3x21向右平移2个单位,得:y=3(x2)21,故所得抛物线的表达式为y=3(x2)21.故选:D.【点睛】本题考查
14、平移的规律,解题的关键是掌握抛物线平移的规律.12、B【解析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.二、填空题(每题4分,共24分)13、【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率因此,theorem中的7个字母中有2个字母e,任取一张,那么取到字母e的概率为14、【分析】先根据题意得出O的半径,再根据勾股定理求出BE的长,进而可得出结论【详解】连接O
15、B,OCOB(CEDE)5,CE3,OE532,CDAB,BEAB2BE故答案为:【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键15、k且k1【解析】因为一元二次方程有实数根,所以2且k+12,得关于k的不等式,求解即可【详解】关于x的一元二次方程(k+1)x13x+1=2有实数根,2且k+12,即(3)14(k+1)12且k+12,整理得:4k1且k+12,k且k1故答案为k且k1【点睛】本题考查了一元二次方程根的判别式解决本题的关键是能正确计算根的判别式本题易忽略二次项系数不为216、6【分析】设正方形ABOC与正方形EFCD的边长分别为m
16、,n,根据SAOE=S梯形ACDE+SAOC-SADE,可求出m2=6,然后根据反比例函数比例系数k的几何意义即可求解.【详解】设正方形ABOC与正方形EFCD的边长分别为m,n,则OD=m+n,SAOE=S梯形ACDE+SAOC-SADE, m2=6,点A在反比例函数的图象上,k=m2=6,故答案为:6.【点睛】本题考查了正方形的性质,割补法求图形的面积,反比例函数比例系数k的几何意义,从反比例函数(k为常数,k0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数.17、(答案不唯一)【分析】设二次函数的表达式为y=x2+x+c,将(0,3)代
17、入得出c=3,即可得出二次函数表达式【详解】解:设二次函数的表达式为y=ax2+bx+c(a0),图象为开口向上,且经过(0,3),a0,c=3,二次函数表达式可以为:y=x2+3(答案不唯一)故答案为:y=x2+3(答案不唯一)【点睛】本题主要考查了用待定系数法求二次函数解析式,得出c=3是解题关键,属开放性题目,答案不唯一18、4【解析】试题解析:边长为4cm的正方形ABCD绕它的顶点A旋转180,顶点B所经过的路线是一段弧长,弧长是以点A为圆心,AB为半径,圆心角是180的弧长,根据弧长公式可得:=4故选A三、解答题(共78分)19、x2=7,x2=2【解析】观察原方程,可运用二次三项式
18、的因式分解法进行求解【详解】原方程可化为:(x7)(x+2)=2,x7=2或x+2=2;解得:x2=7,x2=220、 (1)14;(2)12. 【解析】试题分析:(1)根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案试题解析:(1)从甲、乙、丙3名同学中随机抽取环保志愿者,抽取1名,恰好是甲的概率为:13.(2)抽取2名,可得:甲乙,甲
19、丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,抽取2名,甲在其中的概率为:23.考点:概率.21、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析【分析】(1)根据题意列出表格,由表格可求出所有等可能结果以及小力获胜和小明获胜的情况,由此可求得两人获胜的概率;(2)比较两人获胜的概率,即可知游戏是否公平.【详解】解:(1)列表得:转盘两个数字之积转盘02110212010由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,.(2).这个游戏对双方不公平.【点睛】本题考查了概率在游戏公平性中的应用,熟练掌握
20、列表格或树状图法求概率是解题的关键.22、(1)证明见解析;(2)证明见解析;(3)【分析】(1)连接CD,根据直径所对的圆周角为直角得出ADB+EDC=90,根据同弧所对的圆周角相等得出BAC=EDC,然后结合已知条件得出EAB+BAC=90,从而说明切线;(2)连接BC,根据直径的性质得出ABC=90,根据B是EF的中点得出AB=EF,即BAC=AFE,则得出三角形相似;(3)根据三角形相似得出,根据AF和CF的长度得出AC的长度,然后根据EF=2AB代入求出AB和EF的长度,最后根据RtAEF的勾股定理求出AE的长度.【详解】解:(1)如答图1,连接CD, AC是O的直径,ADC=90
21、ADB+EDC=90 BAC=EDC,EAB=ADB, BAC=EAB+BAC=90 EA是O的切线; (2)如答图2,连接BC, AC是O的直径,ABC=90. CBA=ABC=90 B是EF的中点,在RtEAF中,AB=BF BAC=AFE EAFCBA (3)EAFCBA,AF=4,CF=2, AC=6,EF=2AB,解得AB=2EF=4AE=【点睛】本题考查切线的判定与性质;三角形相似的判定与性质23、(1);(2)销售单价定为元时,商场可获得最大利润,最大利润是元【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.【详解】解:根据题意得,解得所求一次函数的表达式为(2),抛物线的开口向下,当时,随的增大而增大,又因为获利不得高于45%,60所以,当时,当销售单价定为元时,商场可获得最大利润,最大利润是元【点睛】本题考查了二次函数的实际应用,中等难度,表示出二次函数的解析式是解题关键.24、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(1004x)米;然后根据矩形的面积公式列出方程试题解析:设AB的长度为x米,则BC的长度为(1004x)米 根据题意得 (1004x)x=400,解得 x1=20,x2=1 则1004x=20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东建筑安全员知识题库附答案
- 贵州财经职业学院《现代西方哲学专题》2023-2024学年第一学期期末试卷
- 蚕豆产业基地建设项目可行性研究报告-蚕豆市场需求持续扩大
- 贵阳康养职业大学《医疗健康商务沟通》2023-2024学年第一学期期末试卷
- 广州中医药大学《生物统计附试验设计实验》2023-2024学年第一学期期末试卷
- 2025年-吉林省安全员知识题库附答案
- 广州现代信息工程职业技术学院《心理咨询与心理辅导》2023-2024学年第一学期期末试卷
- 2025年-河北省安全员B证考试题库
- 2025建筑安全员A证考试题库
- 2025年山西省建筑安全员-C证考试(专职安全员)题库及答案
- 《Unit 5 What do we eat 》(说课稿)-2024-2025学年沪教版(2024)英语三年级上册
- 2024年加油站的年度工作总结范文(2篇)
- 福建省晋江市松熹中学2024-2025学年七年级上学期第二次月考语文试题
- (新版)广电全媒体运营师资格认证考试复习题库(含答案)
- 教师及教育系统事业单位工作人员年度考核登记表示例范本1-3-5
- 残疾儿童(孤独症)康复服务机构采购项目招标文件
- 少先队活动课《民族团结一家亲-同心共筑中国梦》课件
- 六年级语文下册 期末复习非连续性文本阅读专项训练(一)(含答案)(部编版)
- 展会活动防疫工作方案
- 肝性脑病的护理课件-
- 2024年银行考试-支付清算系统参与者考试近5年真题附答案
评论
0/150
提交评论