2023届广东省深圳市福田区八校九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023届广东省深圳市福田区八校九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023届广东省深圳市福田区八校九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023届广东省深圳市福田区八校九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023届广东省深圳市福田区八校九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图,已知梯形ABCO的底边AO在轴上,BCAO,ABAO,过点C的双曲线交OB于D,且OD:DB=1:2,若OBC的面积等于3,则k的值()A等于2B等于 C等于 D无法确定2如图,一张扇形纸片OAB,AOB120,OA6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分

2、)的面积为( )A9B129CD63如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,AED2CED,点G为DF的中点若BE1,AG3,则AB的长是( )AB2CD4二次函数yx2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()Ay+3By+3Cy3Dy35如图,点A,B,C是O上的三点,若BOC=50,则A的度数是()A25B20C80D1006近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5 m,则y与x的函数关系式为()Ay100 xBy12xCy200 xDy1200 x7定点投篮是同学们喜爱的

3、体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a0)下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( )x (单位:m)y (单位:m)3.05ABCD8下列不是一元二次方程的是( )ABCD9已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是 ( )A30cm2B15cm2C cm2D10cm210在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球

4、的个数是( )A3个B4个C5个D12个11如图,已知O的半径是4,点A,B,C在O上,若四边形OABC为菱形,则图中阴影部分面积为( )ABCD12把抛物线yx2向右平移1个单位,再向下平移2个单位,所得抛物线是()Ay(x1)+2By(x1)+2Cy(x+1)+2Dy(x1)2二、填空题(每题4分,共24分)13如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.点到地面的高度是_点到地面的高度是_.14用半径为6cm,圆心角为120的扇形围成一个圆锥,则圆锥的底面圆半径为_cm15如图,点B是反比例函数y(x0)的图象上任意一点,ABx轴并交反比例函数y(x0)的图象于点A,以

5、AB为边作平行四边形ABCD,其中C、D在x轴上,则平行四边形ABCD的面积为_16已知依据上述规律,则_17将边长分别为,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为_.18如果将抛物线平移,顶点移到点P(3,-2)的位置,那么所得新抛物线的表达式为_三、解答题(共78分)19(8分)如图,在由边长为1个单位长度的小正方形组成的网格图中,ABC的顶点都在网格线交点上(1)图中AC边上的高为 个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):以点C为位似中心,把ABC按相似比1:2缩小,得到DEC;以AB为一边,作矩形ABMN,使得它的面积恰好为A

6、BC的面积的2倍20(8分)已知:ABC是等腰直角三角形,BAC90,将ABC绕点C顺时针方向旋转得到ABC,记旋转角为,当90180时,作ADAC,垂足为D,AD与BC交于点E(1)如图1,当CAD15时,作AEC的平分线EF交BC于点F写出旋转角的度数;求证:EA+ECEF;(2)如图2,在(1)的条件下,设P是直线AD上的一个动点,连接PA,PF,若AB,求线段PA+PF的最小值(结果保留根号)21(8分)如图,在中, 垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.22(10分)如图,某市有一块长为(3a+b)米、宽为(2

7、a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像(1)试用含a、b的式子表示绿化部分的面积(结果要化简)(2)若a=3,b=2,请求出绿化部分的面积23(10分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小 明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老

8、师放入了多少个红色小球.24(10分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为x cm,C,D两点间的距离为cm,P,D两点之间的距离为cm小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502008.00/cm0.0

9、02.042.093.223.304.004.423.462.502530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象: (3)结合函数图象解决问题:当AD2PD 时,AD的长度约为_25(12分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元, 每增加件,当天平均每件利润减少元.设每天安排人生产乙产

10、品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_乙_若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.26在平面直角坐标系中,抛物线y4x28mxm2+2m的顶点p(1)点p的坐标为 (含m的式子表示)(2)当1x1时,y的最大值为5,则m的值为多少;(3)若抛物线与x轴(不包括x轴上的点)所围成的封闭区域只含有1个整数点,求m的取值范围参考答案一、选择题(每题4分,共48分)1、B【解析】如图分别过D作DEY轴于E,过C作CFY轴于F,则ODEOBF,OD:DB=1:2相似比= 1:3面积比= OD:DB=1:9即又解得K=

11、故选B2、A【分析】根据阴影部分的面积=S扇形BDOS弓形OD计算即可【详解】由折叠可知,S弓形AD=S弓形OD,DA=DOOA=OD,AD=OD=OA,AOD为等边三角形,AOD=60AOB=120,DOB=60AD=OD=OA=6,AC=CO=3,CD=3,S弓形AD=S扇形ADOSADO6369,S弓形OD=69,阴影部分的面积=S扇形BDOS弓形OD(69)=9故选:A【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键3、B【分析】根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,进而得到得ADG=DAG,再结合两直线平行,内错角相等可得ADG=CED

12、,再根据三角形外角定理AGE=2ADG,从而得到AED=AGE,再得到AE=AG,然后利用勾股定理列式计算即可得解【详解】解:四边形ABCD是矩形,点G是DF的中点,AG=DG,ADG=DAG,ADBC,ADG=CED,AGE=ADG+DAG=2CED,AED=2CED,AED=AGE,AE=AG=3,在RtABE中,故选:B【点睛】本题考查了矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理的应用,求出AE=AG是解题的关键4、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单

13、位后,新抛物线的顶点为(1,1)新抛物线的解析式为: y1故选:D【点睛】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.5、A【解析】BOC=50,A=BOC=25故选:A【点睛】本题考查圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对圆心角的一半.6、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k的值【详解】由题意,设ykx,由于点(0.5,200)适合这个函数解析式,则k0.5200100,y100 x.故眼镜度数y与镜片焦距x之间的函数关系式为y100 x.故选:A.

14、【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式7、C【分析】用待定系数法可求二次函数的表达式,从而可得出答案.【详解】将代入中得 解得 当时, 故选C【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.8、C【分析】本题根据一元二次方程的定义解答一元二次方程必须满足四个条件:(1)是整式方程;(2)含有一个未知数;(3)未知数的最高次数是2;(4)二次项系数不为1由这四个条件对四个选项进行验证,满足这四个条件者为正确答案【详解】解:、正确,符合一元二次方程的

15、定义;、正确,符合一元二次方程的定义;、错误,整理后不含未知数,不是方程; 、正确,符合一元二次方程的定义故选:C【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是29、B【解析】试题解析:底面半径为3cm,底面周长6cm圆锥的侧面积是65=15(cm2),故选B10、B【分析】设蓝球有x个,根据摸出一个球是红球的概率是,得出方程即可求出x【详解】设蓝球有x个,依题意得解得x=4,经检验,x=4是原方程的解,故蓝球有4个,选B.【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率所求情况数与

16、总情况数之比得到所求的情况数是解决本题的关键11、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案【详解】连接OB和AC交于点D,如图所示:圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,OBAC,OD=OB=2,在RtCOD中利用勾股定理可知:CD=,sinCOD= COD=60,AOC=2COD=120,S菱形ABCO=,S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积

17、=ab(a、b是两条对角线的长度);扇形的面积=.12、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解【详解】抛物线yx1向右平移1个单位,得:y(x1)1;再向下平移1个单位,得:y(x1)11故选:D【点睛】此题主要考查了二次函数与几何变换,正确记忆平移规律是解题关键二、填空题(每题4分,共24分)13、 【分析】过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:,BF=40cmA到地面的高度为:.,

18、AH=10,D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.14、1【详解】解:设圆锥的底面圆半径为r,根据题意得1r=,解得r=1,即圆锥的底面圆半径为1cm故答案为:1【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键15、1【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得AB的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解【详解】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y得,b= 则x=,即B的横坐标是同理可得:A的横

19、坐标是:则AB=-()= 则 S =b=1.故答案为1【点睛】此题考查反比例函数系数k的几何意义,解题关键在于设A的纵坐标为b16、.【解析】试题解析:等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是13=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是24=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是35=1所以a99=.考点:规律型:数字

20、的变化类17、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,四边形MEGH为正方形,AENAHGNE:GH=AE:AGAE=2+3=5,AG=2+3+4=9,GH=4NE:4=5:9NE=同理可求BK=梯形BENK的面积:阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18、【解析】抛物线y=2x平移,使顶点移到点P(3,-2)的位置,所得新抛物线的表达式为

21、y=2(x-3)-2.故答案为y=2(x-3)-2.三、解答题(共78分)19、(1);(2)见解析,见解析【分析】(1)利用等面积法即可求出AC边上的高;(2)利用位似图形的性质得出对应点位置连接即可;利用矩形的判定方法即可画出【详解】解:(1)由图可知,设AC边上的高为x, 则由三角形面积公式可得:解得,即AC边上的高为.(2)如图所示:DEC即为所求如图所示:矩形ABMN即为所求【点睛】本题考查作位似图形,矩形的判定,勾股定理.(1)中熟练掌握等面积法是解决此问的关键;(2)中能作出AC的中点是解题关键;(3)中注意矩形的四个角都是直角,且矩形的一边为AB,另一边要与ABC中AB边上的高

22、相等.20、(1)105,见解析;(2)【分析】(1)解直角三角形求出ACD即可解决问题,连接AF,设EF交CA于点O,在EF时截取EM=EC,连接CM首先证明CFA是等边三角形,再证明FCMACE(SAS),即可解决问题(2)如图2中,连接AF,PB,AB,作BMAC交AC的延长线于M证明AEFAEB,推出EF=EB,推出B,F关于AE对称,推出PF=PB,推出PA+PF=PA+PBAB,求出AB即可解决问题【详解】解:由CAD15,可知ACD=90-15=75,所以ACA=180-75=105即旋转角为105证明:连接AF,设EF交CA于点O在EF时截取EMEC,连接CMCEDACE+CA

23、E45+1560,CEA120,FE平分CEA,CEFFEA60,FCO180457560,FCOAEO,FOCAOE,FOCAOE,COEFOA,COEFOA,FAOOEC60,ACF是等边三角形,CFCAAF,EMEC,CEM60,CEM是等边三角形,ECM60,CMCE,FCAMCE60,FCMACE,FCMACE(SAS),FMAE,CE+AEEM+FMEF(2)解:如图2中,连接AF,PB,AB,作BMAC交AC的延长线于M由可知,EAFEAB75,AEAE,AFAB,AEFAEB,EFEB,B,F关于AE对称,PFPB,PA+PFPA+PBAB,在RtCBM中,CBBCAB2,MC

24、B30,BMCB1,CM,ABPA+PF的最小值为【点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大21、(1)CE2;(2)菱形,理由见解析.【分析】(1)根据题意易求得ACDCAFBAF30,可得AE=CE,然后利用30角的三角函数可求得CD的长、DE与AE的关系,进一步可得CE与CD的关系,进而可得结果;(2)根据角平分线的性质可得CFGF,根据HL可证RtACFRtAGF,从而得AFCAFG,由平行线的性质和等

25、量代换可得CEFCFE,可得CECF,进而得CEFG,根据一组对边平行且相等可得四边形CEGF是平行四边形,进一步即得结论【详解】解:(1)ACB90,B30,CAB60,CDAB,ACD30,AC6,AF平分CAB,CAFBAF30,ACDCAF,CEAE2DE,CE2;(2)四边形CEGF是菱形证明:FGAB,FCAC,AF平分CAB,ACFAGF90,CFGF,在RtACF与RtAGF中,AF=AF,CF=GF,RtACFRtAGF(HL),AFCAFG,CDAB,FGAB,CDFG,CEFEFG,CEFCFE,CECF,CEFG,CEFG,四边形CEGF是平行四边形,CECF,平行四边

26、形CEGF是菱形【点睛】本题考查了直角三角形的性质、角平分线的性质、锐角三角函数、菱形的判定和直角三角形全等的判定和性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键22、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2时,原式=.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键23、(1)P=;(2)加入了5个红球【分析】(1)利

27、用列表法表示出所有可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种,颜色不同的概率为P=(2)由图表可得摸到红球概率为设加入了x个红球=解得x=5经检验x=5是原方程的解答:加入了5个红球。【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、(2)m2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如图,可得当与时,过点P作PMAB于M,然后根据等腰三角形的性质和勾股定理求出PM的长即得m的值;(2)用光滑的曲线依次连接各点即可;(3)由题意AD2PD可得x=2y2,只要在函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论