2022年湖北省恩施州利川市九年级数学第一学期期末监测试题含解析_第1页
2022年湖北省恩施州利川市九年级数学第一学期期末监测试题含解析_第2页
2022年湖北省恩施州利川市九年级数学第一学期期末监测试题含解析_第3页
2022年湖北省恩施州利川市九年级数学第一学期期末监测试题含解析_第4页
2022年湖北省恩施州利川市九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1顺次连接矩形各边中点得到的四边形是( )A平行四边形B矩形C菱形D正方形2如图,OAB与OCD是以点0为位似中心的位似图形,相似比为1:2,OCD=90,CO=CD若B(2,0),则点C的坐标为( )A(2,2)B(1,2)C(,2)D(2,1)3若双曲线经过第二、四象限,则直线经过的象限是( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限4某个几何体的三视图如图所示,该几何体是( )ABCD5二次函数(b0)与反比例函数在同一坐标系中的图象可能是( )ABCD6如图,菱形ABCD中,A60,边AB8,E为边DA的

3、中点,P为边CD上的一点,连接PE、PB,当PEEB时,线段PE的长为()A4B8C4D47如图,在RtABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为( )ABCD8如图,在ABC中,AB18,BC15,cosB,DEAB,EFAB,若,则BE长为()A7.5B9C10D59已知反比例函数的图象经过点,小良说了四句话,其中正确的是( )A当时,B函数的图象只在第一象限C随的增大而增大D点不在此函数的图象上10下列图案中,既是轴对称图形又是中心对称图形的是()ABCD11如图,AB为O的直径,C、D是O上的两点, ,弧AD=弧CD则DAC等于( )ABCD12已知O的

4、直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是( )A相离B相切C相交D相交或相切二、填空题(每题4分,共24分)13如图,菱形ABCD的对角线AC与BD相交于点O,AC6,BD8,那么菱形ABCD的面积是_14若方程x22x40的两个实数根为a,b,则 -a2 - b2的值为_。15计算:_16直角三角形ABC中,B90,若cosA,AB12,则直角边BC长为_17如图,在ABC中,C=90,AC=3,若cosA=,则BC的长为_.18如图所示,等边ABC中D点为AB边上一动点,E为直线AC上一点,将ADE沿着DE折叠,点A落在直线BC上,对应点为F,若

5、AB4,BF:FC1:3,则线段AE的长度为_三、解答题(共78分)19(8分)用配方法解一元二次方程20(8分)如图,在中,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,面出旋转后的(其中、三点旋转后的对应点分别是点、);若,则_(用含的式子表示)21(8分)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60的方向上该货船航行30分钟后到达B处,此时再测得该岛在北偏东30的方向上,(1)求B到C的距离;(2)如果在C岛周围9海里的区域内有暗礁若继续向正东方向航行,该货船有无触礁

6、危险?试说明理由(1.732)22(10分)小红想利用阳光下的影长测量学校旗杆AB的高度如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米(1)请在图中画出此时旗杆AB在阳光下的投影BF (2)如果BF=1.6,求旗杆AB的高23(10分)如图,抛物线yax2+bx+2交x轴于点A(-1,0),B(n,0)(点A在点B的左边),交y轴于点C(1)当n2时求ABC的面积(2)若抛物线的对称轴为直线xm,当1n4时,求m的取值范围24(10分)如图,中,面积为1(1)尺规作图:作的平分线交于点;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点到两条直角边的距

7、离25(12分)(1)(问题发现)如图1,在RtABC中,ABAC2,BAC90,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为 (2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长26如图,PA,PB分别与O相切于A,B点,C为O上一点,P=66,求C参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的

8、一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形【详解】解:如图,矩形中, 分别为四边的中点, 四边形是平行四边形, 四边形是菱形故选C【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定2、A【解析】连接CB.OCD=90,CO=CD,OCD是等腰直角三角形,COB=45.OAB与OCD是位似图形,相似比为1:2,2OB=OD,OAB是等腰直角三角形.2OB=OD,点B为OD的中点,BCOD.B(2,0),OB=2,OAB是等腰直角三角形,COB=45.BCOD,OBC是等腰直角三角形,BC=OB=2,点C的坐标为(2,2

9、).故选A.3、C【分析】根据反比例函数的性质得出k10,再由一次函数的性质判断函数所经过的象限【详解】双曲线y经过第二、四象限,k10,则直线y=2x+k1一定经过一、三、四象限故选:C【点睛】本题考查了一次函数和反比例函数的性质,属于函数的基础知识,难度不大4、D【解析】根据几何体的三视图判断即可【详解】由三视图可知:该几何体为圆锥故选D【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大5、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:当反比例函数经过第二、四象限时, a

10、0,抛物线(b0)中a0,b0,抛物线开口向下. 所以A选项错误.当反比例函数经过第一、三象限时, a0,抛物线(b0)中a0,b0,抛物线开口向上,抛物线与y轴的交点在x轴上方. 所以B选项正确,C,D选项错误.故选B考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用6、D【分析】由菱形的性质可得AB=AD=8,且A=60,可证ABD是等边三角形,根据等边三角形中三线合一,求得BEAD,再利用勾股定理求得EB的长,根据PEEB,即可求解【详解】解:如上图,连接BD四边形ABCD是菱形,AB=AD=8,且A=60,ABD是等边三角形,点E是DA的中点,AD=8BEAD,且

11、A=60,AE=在RtABE中,利用勾股定理得:PEEBPE=EB=4,故选:D【点睛】本题考查了菱形的性质,等边三角形判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键7、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA【详解】解:CD是RtABC斜边AB上的中线,AB=2CD=4,cosA=.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数掌握直角三角形斜边的中线与斜边的关系是解决本题的关键在直角三角形中,斜边的中线等于斜边的一半8、C【分析】先设DEx,然后根据已知条件分别用x表示AF、BF、BE的

12、长,由DEAB可知,进而可求出x的值和BE的长【详解】解:设DEx,则AF2x,BF182x,EFAB,EFB90,cosB,BE(182x),DEAB,x6,BE(1812)10,故选:C【点睛】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键9、D【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断【详解】解:反比例函数的图象经过点(3,2),k=23=6,图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误,点不在此函数的图象上,选项D正确;故选:D【点睛】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型10、B

13、【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合11、C【分析】利用圆周角定理得到,则,再根据圆内接四边形的对角互补得到,又根据弧AD=弧CD得到,然后根据等腰三角形的性质和三角形的内角和定理可得出的度数【详解】AB为O的直径弧AD=弧C

14、D故选:C【点睛】本题考查了圆周角定理、圆内接四边形的性质、等腰三角形的性质等知识点,利用圆内接四边形的性质求出的度数是解题关键12、A【分析】这条直线与这个圆的位置关系只要比较圆心到直线的距离与半径的大小关系即可【详解】O的直径为12cm,O的半径r为6cm,如果圆心O到一条直线的距离d为7cm,dr,这条直线与这个圆的位置关系是相离故选择:A【点睛】本题考查直线与圆的位置关系问题,掌握点到直线的距离与半径的关系是关键二、填空题(每题4分,共24分)13、1【分析】根据菱形的面积公式即可求解【详解】菱形ABCD的对角线AC与BD相交于点O,AC6,BD8,菱形ABCD的面积为ACBD=68=

15、1,故答案为:1【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式14、-12【分析】根据一元二次方程的解及根与系数的关系,得出两根之和与两根之积,再将待求式利用完全平方公式表示成关于两根之和与两根之积的式子,最后代入求值即可【详解】解:方程x22x40的两个实数根为,=-4-8=-12.故答案为:-12.【点睛】本题考查了根与系数的关系以及一元二次方程的解,将待求式利用完全平方公式表示成关于两根之和与两根之积的式子是解题的关键15、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案【详解】解:=故答案为:【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题

16、的关键16、1【分析】先利用三角函数解直角三角形,求得AC20,再根据勾股定理即可求解【详解】解:在直角三角形ABC中,B90,cosA,AB12,cosA,AC20,BC1故答案是:1【点睛】此题主要考查勾股定理、锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键17、1【分析】由题意先根据C=90,AC=3,cosA=,得到AB的长,再根据勾股定理,即可得到BC的长【详解】解:ABC中,C=90,AC=3,cosA=,AB=5,BC=1.故此空填1【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做A的余弦,记作cosA,以此并结合勾股定理分析求解18、或14【解析

17、】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长【详解】解:按两种情况分析:点F在线段BC上,如图所示,由折叠性质可知ADFE60BFD+CFE120,BFD+BDF120BDFCFEBCBDFCFE,AB4,BF:FC1:3BF1,CF3设AEx,则EFAEx,CE4x解得BD,DFBD+DFAD+BD4解得x,经检验当x时,4x0 x是原方程的解当点F在线段CB的延长线上时,如图所示,同理可知BDFCFEAB4,BF:FC1:3,可得BF2,CF6设AEa,可知AEEFa,CEa4解得BD,DFBD+DFBD+AD4解得a14

18、经检验当a14时,a40a14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键三、解答题(共78分)19、,【分析】根据配方法解一元二次方程的步骤,解方程即可【详解】解:移项得 x26x=7,配方得 x26x+9=7+9, 即, -3=4 , 【点睛】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方” 20、(1)见解析;(2)见解析,90【分析】(1)利用网格特点和轴对称的性质画出O点;(2)利用网格特点和旋转的性质

19、分别画出A、B、C三点对应点点E、F、G即可;先确定OCBDCB,再利用OBOC和三角形内角和得到BOC1802,根据旋转的性质得到COG90,则BOG2702,于是可计算出OGB45,然后计算OGCOGB即可【详解】(1)如图,点O为所作;(2)如图,EFG为所作;点O与点D关于BC对称,OCBDCB,OBOC,OBCOCB,BOC1802,COG90,BOG1802902702,OBOG,OGB 180(2702)45,BGCOGCOGB45(45)90故答案为90【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边

20、上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形21、(1)12海里;(2)该货船无触礁危险,理由见解析【分析】(1)证出BACACB,得出BCAB2412即可;(2)过点C作CDAD于点D,分别在RtCBD、RtCAD中解直角三角形,可先求得BD的长,然后得出CD的长,从而再将CD与9比较,若大于9则无危险,否则有危险【详解】解:(1)由题意得:BAC901030,MBC903010,MBCBAC+ACB,ACBMBCBAC30,BACACB,BCAB2412(海里);(2)该货船无触礁危险,理由如下:过点C作CDAD于点D,如图所示:EAC10,FBC30,CAB30,CBD1

21、0在RtCBD中,CDBD,BC=2BD,由(1)知BC=AB,AB=2BD.在RtCAD中,ADCD3BDAB+BD12+BD,BD1CD119,货船继续向正东方向行驶无触礁危险【点睛】本题考查解直角三角形的应用-方向角问题、等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题22、 (1)见解析 (2) 8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AFCE交BD于F,则BF为所求;(2)证明ABFCDE,然后利用相似比计算AB的长试题解析:(1)连结CE,过A点作AFCE交BD于F,则BF为所求,如图;(2)AFCE,AFB=C

22、ED,而ABF=CDE=90,ABFCDE, 即, AB=8(m),答:旗杆AB的高为8m23、(1)3;(2)0m【分析】(1)根据n的值,得到AB的长度,然后求得点C的坐标,进而得到ABC的面积;(2)根据题意,可以得到,然后用含m的代数式表示n,再根据n的取值范围即可得到m的取值范围【详解】解:(1)如图,连接AC、BC,令x=0,y=2,点C的坐标为:(0,2),A(-1,0),B(2,0),AB=3,OC=2,ABC的面积是:; (2)抛物线yax2+bx+2交x轴于点A(1,0),B(n,0),对称轴为直线xm,1n4,得n2m+1, 12m+14,解得:0m【点睛】本题考查了二次

23、函数与坐标轴的交点问题,二次函数的性质,三角形的面积公式,解题的关键是熟练掌握二次函数的性质进行解题24、(1)见解析;(2)【分析】(1)利用尺规作图的步骤作出ACB的平分线交AB于点D即可;(2)作于E,于F,根据面积求出BC的长.法一:根据角平分线的性质得出DE=DF,从而得出四边形CEDF为正方形.再由,得出,列方程可以求出结果;法二:根据,利用面积法可求得DE,DF的值.【详解】解:(1)ACB的平分线CD如图所示:(2)已知,面积为1,.法一:作,是角平分线,而,四边形为正方形设为,则由,.即,得.点到两条直角边的距离为.法二:,即,又由(1)知AC=15,BC=20,.故点到两条直角边的距离为.【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型25、(1)BE=AF;(2)无变化;(3)1或+1【解析】(1)先利用等腰直角三角形的性质得出AD= ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出ACFBCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论