北师大版九年级上册数学教学课件6.2 第2课时 反比例函数的性质_第1页
北师大版九年级上册数学教学课件6.2 第2课时 反比例函数的性质_第2页
北师大版九年级上册数学教学课件6.2 第2课时 反比例函数的性质_第3页
北师大版九年级上册数学教学课件6.2 第2课时 反比例函数的性质_第4页
北师大版九年级上册数学教学课件6.2 第2课时 反比例函数的性质_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、经典 专业 用心精品课件本课件来源于网络只供免费交流使用6.2 反比例函数的图象与性质第六章 反比例函数第2课时反比例函数的性质学习目标1. 会画反比例函数图象,了解和掌握反比例函数的图 象和性质. (重点)2. 能够初步应用反比例函数的图象和性质解题. (重点)3. 理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中. (重点、难点)4. 能够解决反比例函数与一次函数的综合性问题. (重 点、难点)导入新课 反比例函数的图象是什么?反比例函数的性质是什么?能类比前面学习的一次函数得到吗?反比例函数的图象是双曲线复习引入问题1 问题2 反比例函数的性质一讲授新课例

2、1 画反比例函数 与 的图象.合作探究提示:画函数的图象步骤一般分为:列表描点连线. 需要注意的是在反比例函数中自变量 x 不能为 0.解:列表如下:x65432112345611.21.52366321.51.2122.43466432.42O2描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点56xy432112345634156123456连线:用光滑的曲线顺次连接各点,即可得 的图象观察这两个函数图象,回答问题:思考:(1) 每个函数图象分别位于哪些象限?(2) 在每一个象限内,随着x的增大,y如何变化? 你能由它们的解析式说明理由吗?(3) 对于反比例函数 (k0),考

3、虑问题(1)(2), 你能得出同样的结论吗?由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;在每个象限内,y 随 x 的增大而减小.反比例函数 (k0) 的图象和性质:观察与思考 当 k =2,4,6时,反比例函数 的图象,有哪些共同特征?回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k0) 的性质的过程,你能用类似的方法研究反比例函数 (k0)的图象和性质吗? yxOyxOyxO反比例函数 (k0) 的图象和性质:由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;在每个象限内,y随x的增大而增大.归纳: (1) 当 k 0 时,双曲线的两支分

4、别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;(2) 当 k ”“”或“=”).练一练例2 已知反比例函数 ,y 随 x 的增大而增大,求a的值.解:由题意得a2+a7=1,且a10 解得 a=3.反比例函数的图象和性质的初步运用二练一练 已知反比例函数 在每个象限内,y 随着 x 的增大而减小,求 m 的值解:由题意得 m210=1,且 3m80 解得 m=3.例3 已知反比例函数的图象经过点 A (2,6).(1) 这个函数的图象位于哪些象限?y 随 x 的增大如 何变化?解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随

5、 x 的增大而减小.(2) 点B(3,4),C( , ),D(2,5)是否在这个 函数的图象上?解:设这个反比例函数的解析式为 ,因为点 A (2,6)在其图象上,所以有 ,解得 k =12. 因为点 B,C 的坐标都满足该解析式,而点 D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上. 所以反比例函数的解析式为 .(1) 图象的另一支位于哪个象限?常数 m 的取值范围 是什么?Oxy例4 如图,是反比例函数 图象的一支. 根据图象,回答下列问题:解:因为这个反比例函数图象的一 支位于第一象限,所以另一支 必位于第三象限.由因为这个函数图象位于第一、三象限,所以

6、m50,解得m5.(2) 在这个函数图象的某一支上任取点 A (x1,y1) 和 点B (x2,y2). 如果x1x2,那么 y1 和 y2 有怎样的 大小关系?解:因为 m5 0,所以在这个函数图象的任一支 上,y 都随 x 的增大而减小,因此当x1x2时, y1y2.练一练已知反比例函数 的图象经过点 A (2,3) (1) 求这个函数的表达式;解: 反比例函数 的图象经过点 A(2,3), 把点 A 的坐标代入表达式,得 , 解得 k = 6. 这个函数的表达式为 .(2) 判断点 B (1,6),C(3,2) 是否在这个函数的 图象上,并说明理由;解:分别把点 B,C 的坐标代入反比例

7、函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式, 所以点 B 不在该函数的图象上,点 C 在该函 数的图象上 (3) 当 3 x 0, 当 x 0 时,y 随 x 的增大而减小, 当 3 x 1 时,6 y 2.反比例函数解析式中 k 的几何意义三1. 在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形, 填写下页表格: 合作探究5123415xyOPS1 S2P (2,2) Q (4,1)S1的值S2的值 S1与S2的关系猜想 S1,S2 与 k的关系 4 4S1=S2S1=S2=k5432143232451QS1的值

8、S2的值S1与S2的关系猜想与 k 的关系P (1,4)Q (2,2)2. 若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:4 4S1=S2S1=S2=kyxOPQS1 S2由前面的探究过程,可以猜想: 若点P是 图象上的任意一点,作 PA 垂直于 x 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k的关系是S矩形 AOBP=|k|.yxOPS我们就 k 0 的情况给出证明:设点 P 的坐标为 (a,b)AB点 P (a,b) 在函数 的图象上, ,即 ab=k. S矩形 AOBP=PBPA=ab=ab=k;若点 P 在第二象限,则 a0,若点 P 在第四象限,则 a

9、0,b 0的情况. 点 Q 是其图象上的任意一 点,作 QA 垂直于 y 轴,作 QB 垂直于x 轴,矩形AOBQ 的面积与 k 的关系是 S矩形AOBQ= . 推理:QAO与QBO的 面积和 k 的关系是 SQAO=SQBO= .Q对于反比例函数 ,AB|k|yxO归纳:反比例函数的面积不变性A. SA SBSC B. SASBSCC. SA =SB=SC D. SASC0) 图像上的任意两点,过点 P 作 x 轴的垂线 PA,垂足为 A,过点 C 作 x 轴的垂线 CD,垂足为 D,连接 OC交 PA 于点 E. 设 POA 的面积为 S1,则 S1= ;梯形CEAD的面积为 S2,则 S

10、1 与 S2 的大小关系是 S1 S2;POE 的面积 S3 和 S2 的大小关系是S2 S3.典例精析2S1S2S3 如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点, AOC 的面积 S1、 BOD 的面积 S2、 POE 的面积 S3 的大小关系为 .S1 = S2 S3练一练解析:由反比例函数面积的不变性易知 S1 = S2. PE 与双曲线的一支交于点 F,连接 OF,易知,SOFE = S1 = S2,而 S3SOFE,所以 S1,S2,S3的大小关系为S1 = S2 S3FS1S2S3yDBACx例6 如图,点 A 是反比例函数 (x0)的图象上任意一点,AB/x 轴

11、交反比例函数 (x0) 的图象于点 B,以 AB 为边作平行四边形 ABCD,其中点 C,D 在 x 轴上,则 S平行四边形ABCD =_.325 如图所示,在平面直角坐标系中,过点 的直线与 x 轴平行,且直线分别与反比例函数 (x0) 和 (x0)的图象交于点P,Q,若POQ 的面积为 8,则k =_.QPOxMy10练一练例7 如图所示,点A (x1,y1),B(x2,y2)都在双曲线 上,且 x2x1 = 4,y1y2 =2. 分别过点 A,B 向 x 轴、y 轴作垂线,垂足分别为 C,D,E,F,AC 与 BF 相交于 G 点,四边形 FOCG 的面积为 2,五边形 AEODB 的面

12、积为 14,那么双曲线的解析式为 .解得 k = 6.双曲线的解析式为 .解析: x2x1 = 4,y1y2 =2,BG = 4,AG =5,SABG =452=10.由反比例函数面积的不变性可知,S长方形ACOE = S长方形BDOF = k . S五边形 AEODB = S四边形ACOE +S四边形BDOF S四边形FOCG+ SABG = k + k 2+4=14. 如图,已知点 A,B 在双曲线 上,ACx 轴于点C,BDy 轴于点 D,AC 与 BD 交于点 P,P 是 AC 的中点,若ABP 的面积为6,则 k = .24练一练E F 解析:作AEy 轴于点 E,BFx 轴于点 F

13、.P 是 AC 的中点,S四边形OCPD= S四边形ACOE= S四边形BDOF = k,SABP= S四边形BFCP,= (S四边形BDOFS四边形OCPD)= (k k)= k = 6.k =24. 1. 已知反比例函数 的图象在第一、三象 限内,则m的取值范围是_. 2. 下列关于反比例函数 的图象的三个结论: (1) 经过点 (1,12) 和点 (10,1.2); (2) 在每一个象限内,y 随 x 的增大而减小; (3) 双曲线位于二、四象限. 其中正确的是 (填序号).(1)(3)m 2当堂练习A. 4 B. 2 C. 2 D.不确定3. 如图所示, P 是反比例函数 的图象上一点

14、, 过点 P 作 PB x 轴于点 B,点 A 在 y 轴上, ABP 的面积为 2,则 k 的值为 ( ) OBAPxyA4. 已知反比例函数 y = mxm5,它的两个分支分别在 第一、第三象限,求 m 的值.解:因为反比例函数 y = mxm5 的两个分支分别在第 一、第三象限, 所以有m25=1,m0,解得 m=2.5. 已知反比例函数 的图象经过点 A (2,4). (1) 求 k 的值;解: 反比例函数 的图象经过点 A(2,4), 把点 A 的坐标代入表达式,得 ,解得 k = 8.(2) 这个函数的图象分布在哪些象限?y 随 x 的增大 如何变化?解:这个函数的图象位于第二、四象限,在每一个 象限内,y 随 x 的增大而增大.(3) 画出该函数的图象;Oxy解:如图所示:(4) 点 B (1,8) ,C (3,5)是否在该函数的图象上?因为点 B 的坐标满足该解析式,而点 C 的坐标不满足该解析式,所以点 B 在该函数的图象上,点 C 不在该函数的图象上. 解:该反比例函数的解析式为 .6. 如图,反比例函数 与一次函数 y =x + 2 的图象交于 A,B 两点. (1) 求 A,B 两点的坐标;AyOBx解:y=x + 2 , 解得 x = 4, y =2 所以A(2,4)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论