2022届云南省临沧市镇康中考二模数学试题含解析_第1页
2022届云南省临沧市镇康中考二模数学试题含解析_第2页
2022届云南省临沧市镇康中考二模数学试题含解析_第3页
2022届云南省临沧市镇康中考二模数学试题含解析_第4页
2022届云南省临沧市镇康中考二模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在中,则等于( )ABCD2已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D13已知点,

2、为是反比例函数上一点,当时,m的取值范围是( )ABCD4某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A18B16C38D125 “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为 ABCD6一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD7如图,在ABC中,C=90,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B动点Q同时从点A出发,

3、以1cm/s的速度沿折线ACCB方向运动到点B设APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )ABCD8计算4+(2)25=()A16 B16 C20 D249甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件设乙每天完成x个零件,依题意下面所列方程正确的是()ABCD10如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD11若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )Aa3Ba3Ca3Da3122016的相反数是( )ABCD二

4、、填空题:(本大题共6个小题,每小题4分,共24分)13某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63,则筒仓CD的高约为_m(精确到0.1m,sin630.89,cos630.45,tan631.96)14如图,在ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=_15等腰中,是BC边上的高,且,则等腰底角的度数为_.16如图,在等腰ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_cm17如图,在平

5、面直角坐标系中,抛物线可通过平移变换向_得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是_18已知圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60,PA=PD试判断PD与O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CECP的值20(6分)如图,已知ABC中,AB=AC=5,cosA=求底边BC的长21(6分)已知:如图,AB为O的直径,AB=AC,BC交O于点D,DEAC于

6、E(1)求证:DE为O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G若GE=2,AF=3,求EF的长22(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元设销售单价x(元),每日销售量y(件)每日的利润w(元)在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19202130(件)62605840(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式(利润(销售单价成本单价)销售件数

7、)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?23(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多

8、少元时,每天的销售利润最大?最大利润是多少?24(10分)如图,已知A=B,AE=BE,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED25(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF26(12分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求直线AB和反比例函数的解析式;(1)求OCD的面积27(12分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点

9、 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义2、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d4+7或d11或d两圆半径的和;(1)两圆内含,此时圆心距1时,是正数;当原数的绝对值1时,

10、是负数详解:1800000这个数用科学记数法可以表示为 故选C 点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.6、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.7、D【解析】在ABC中,C=90,AC=BC=3cm,可得AB=,A

11、=B=45,分当0 x3(点Q在AC上运动,点P在AB上运动)和当3x6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在ABC中,C=90,AC=BC=3cm,可得AB=,A=B=45,当0 x3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QNAB于点N,在等腰直角三角形AQN中,求得QN=x,所以y=(0 x3),即当0 x3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3x6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QNBC于点

12、N,在等腰直角三角形PQN中,求得QN=(6-x),所以y=(3x6),即当3x6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答8、D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题详解:4+(2)25=4+45=4+20=24,故选:D点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法9、B【解析】根据题意设出未知数,根据甲所用的时间乙所用的时间,用时间列出分式方程即可.【详解】

13、设乙每天完成x个零件,则甲每天完成(x+8)个. 即得, ,故选B.【点睛】找出甲所用的时间乙所用的时间这个关系式是本题解题的关键.10、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等11、A【解析】先求出各不等式的解集,再与已知解集相比较求

14、出 a 的取值范围【详解】由 xa0 得,xa;由 1x12(x+1)得,x1,此不等式组的解集是空集,a1 故选:A【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键12、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、40.0【解析】首先过点A作AEBD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD

15、的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63,CEAEtan63201.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用14、【解析】AB=AC,ADBC,BD=CD=2,BE、AD分别是边AC、BC上的高,ADC=BEC=90,C=C,ACDBCE,CE=,故答案为.15、,【解析】

16、分三种情况:点A是顶角顶点时,点A是底角顶点,且AD在ABC外部时,点A是底角顶点,且AD在ABC内部时,再结合直角三角形中,30的角所对的直角边等于斜边的一半即可求解.【详解】如图,若点A是顶角顶点时,AB=AC,ADBC,BD=CD,,AD=BD=CD,在RtABD中,B=BAD=;如图,若点A是底角顶点,且AD在ABC外部时,AC=BC,ACD=30,BAC=ABC=30=15;如图,若点A是底角顶点,且AD在ABC内部时,AC=BC,C=30,BAC=ABC=(180-30)=75;综上所述,ABC底角的度数为45或15或75;故答案为,【点睛】本题考查了等腰三角形的性质和直角三角形中

17、30的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.16、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关17、先向右平移2个单位再向下平移2个单位; 4 【解析】.平移后顶点坐标是(2,-2),利用割补法,把x轴上方阴

18、影部分补到下方,可以得到矩形面积,面积是.18、【解析】解:它的侧面展开图的面积=146=14(cm1)故答案为14cm1点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)PD是O的切线证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120,然后计算出PAD和D的度数,进而可得OPD=90,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45,然后可得AC长,再证明CAEC

19、PA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连结OP,ACP=60,AOP=120,OA=OP,OAP=OPA=30,PA=PD,PAO=D=30,OPD=90,PD是O的切线(2)连结BC,AB是O的直径,ACB=90,又C为弧AB的中点,CAB=ABC=APC=45,AB=4,AC=Absin45=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型20、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值

20、.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=ABcosA=5=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.21、(1)见解析;(2)EAF的度数为30【解析】(1)连接OD,如图,先证明ODAC,再利用DEAC得到ODDE,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到AFB=90,再证明RtGEFRtGAE,利用相似比得到 于是可求出GF=1,然后在RtAEG中利用正弦定义求出EAF的度数即可【详解】(1)证明:连接OD,如图,OB=OD,OBD=ODB,AB=AC,ABC=C,ODB=C,ODAC

21、,DEAC,ODDE,DE为O的切线;(2)解:AB为直径,AFB=90,EGF=AGF,RtGEFRtGAE,即整理得GF2+3GF4=0,解得GF=1或GF=4(舍去),在RtAEG中,sinEAG EAG=30,即EAF的度数为30【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理22、(1)y2x+100,w2x2+136x1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这

22、种纪念花灯每日的最低制造成本需要648元【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设ykx+b列方程组得到y关于x的函数表达式y2x+100,根据题意得到w2x2+136x1800;(2)把w2x2+136x1800配方得到w2(x34)2+1根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设ykx+b则,解得,y2x+100,y关于x的函数表达式y2x+100,w(x18)y(x18)(2x+100)w2x2+136x1800;(2)w2x2+136x18002(x34)2+1当销售单价为34元

23、时,每日能获得最大利润1元;(3)当w350时,3502x2+136x1800,解得x25或43,由题意可得25x32,则当x32时,18(2x+100)648,制造这种纪念花灯每日的最低制造成本需要648元【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式23、(1)y=-x+40(10 x16);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元【解析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.由总利润=数量单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1)y=-x+40(10 x16).(2) 根据题意,得:W=(x-10)y=(x-10)(-x+40)=-x2+50 x-400=-(x+225 a=-10当x25时,W随x的增大而增大10 x16当x=16时,W取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.24、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论