2723相似三角形应用举例课件第二课时_第1页
2723相似三角形应用举例课件第二课时_第2页
2723相似三角形应用举例课件第二课时_第3页
2723相似三角形应用举例课件第二课时_第4页
2723相似三角形应用举例课件第二课时_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、利用三角形相似可以解决一些不能直接测量的物体的长度的问题物1高 :物2高 = 影1长 :影2长知识要点测高的方法 测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。 想估算河的宽度,你有什么好办法吗?活动3TSQPRab 例4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.P=P 分析:PQR=PST= 90 STPQRba

2、得 PQ=90例题求河宽? PQR PST45m60m90m知识要点测距的方法 测量不能到达两点间的距离,常构造相似三角形求解。 如图,左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树根部的距离BD=5m。一个身高1.6m的人沿着正对这两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?BCD拓展应用A作出水平视线FG分别交AB、CD于点H、K,则ABFG,CDFG,ABCD,AFH CFKFHFK=AHCKFHFH+5即=8-1.612-1.6解得FH=8当他与左边的树的距离小于8m时,由于这棵树的遮挡,观察者就看不见右边树的顶

3、端点C。解: DFABCGHKE1. 相似三角形的应用主要有两个方面:(1) 测高 测量不能到达两点间的距离,常构造相似三角形求解。(不能直接使用皮尺或刻度尺量的)(不能直接测量的两点间的距离) 测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决。(2) 测距课堂小结随堂练习 1. 铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高_m。 8OBDCA1m16m0.5m? 2.某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高为_。 4 4. 小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)ADBCE0.8m5m10m?2.4m 5. 在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? 6. 为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论