版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、相交线与平行线作业题平行线的判定:1、同位角相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角互补,两直线平行。一选择题: 1. 如图,下面结论正确的是( ) A. 是同位角 B. 是内错角 C. 是同旁内角 D. 是内错角 2. 如图,图中同旁内角的对数是( ) A. 2对B. 3对C. 4对D. 5对 3. 如图,能与构成同位角的有( ) A. 1个B. 2个C. 3个D. 4个 4. 如图,图中的内错角的对数是( ) A. 2对B. 3对C. 4对D. 5对5如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是( ) A. B. 都是 C. 或D. 以上都不对
2、二填空1 已知:如图,。求证:。证明:() () () ()2 已知:如图,COD是直线,。求证:A、O、B三点在同一条直线上。 证明:COD是一条直线() _() () _ _()三解答题1如图,已知:AB/CD,求证:B+D+BED=(至少用三种方法)2已知:如图,E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C。3已知:如图,且B、C、D在一条直线上。 求证:4已知:如图,DE平分,BF平分,且。 求证:5已知:如图,。 求证:6已知:如图,。 求证: 相交线与平行线作业题一选择题: 1. 如图,下面结论正确的是( ) A. 是同位角 B. 是内错
3、角 C. 是同旁内角 D. 是内错角 2. 如图,图中同旁内角的对数是( ) A. 2对B. 3对C. 4对D. 5对 3. 如图,能与构成同位角的有( ) A. 1个B. 2个C. 3个D. 4个 4. 如图,图中的内错角的对数是( ) A. 2对B. 3对C. 4对D. 5对5如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是( ) A. B. 都是 C. 或D. 以上都不对二填空1 已知:如图,。求证:。证明:() () () ()2 已知:如图,COD是直线,。求证:A、O、B三点在同一条直线上。 证明:COD是一条直线() _() () _ _()三解答题1如图
4、,已知:AB/CD,求证:B+D+BED=(至少用三种方法)2已知:如图,E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C。3已知:如图,且B、C、D在一条直线上。 求证:4已知:如图,DE平分,BF平分,且。 求证:5已知:如图,。 求证:6已知:如图,。 求证: 二相交线平行线检测题一、判断题.1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( )2.平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为补角的两个角的平行线互相垂直.( )5.两条直线都与同一条直线相交,这两条
5、直线必相交.( )6.如果乙船在甲船的北偏西35的方向线上, 那么从甲船看乙船的方向角是南偏东规定35.( )二、填空题1.a、b、c是直线,且ab,bc,则a与c的位置关系是_.2.如图(11),MNAB,垂足为M点,MN交CD于N,过M点作MGCD,垂足为G,EF 过点N点,且EFAB,交MG于H点,其中线段GM的长度是_到_的距离, 线段MN的长度是_到_的距离,又是_的距离,点N到直线MG 的距离是_. (11) (12)3.如图(12),ADBC,EFBC,BD平分ABC,图中与ADO相等的角有_ 个,分别是_.4.因为ABCD,EFAB,根据_,所以_.5.命题“等角的补角相等”的
6、题设_,结论是_.6.如图(13),给出下列论断:ADBC:ABCD;A=C.以上其中两个作为题设,另一个作为结论,用“如果,那么”形式,写出一个你认为正确的命题是_. (13) (14) (15)7.如图(14),直线AB、CD、EF相交于同一点O,而且BOC=AOC,DOF=AOD,那么FOC=_度.8.如图(15),直线a、b被C所截,aL于M,bL于N,1=66,则2=_.三、选择题.1.下列语句错误的是( ) A.连接两点的线段的长度叫做两点间的距离 B.两条直线平行,同旁内角互补 C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角 D.平移变换中,各组对应点连成两
7、线段平行且相等2.如图(16),如果ABCD,那么图中相等的内错角是( ) A.1与5,2与6; B.3与7,4与8; C.5与1,4与8; D.2与6,7与3 (16)3.下列语句:三条直线只有两个交点,则其中两条直线互相平行; 如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; 过一点有且只有一条直线与已知直线平行,其中( ) A.、是正确的命题 B.、是正确命题 C.、是正确命题 D.以上结论皆错4.下列与垂直相交的洗法:平面内,垂直于同一条直线的两条直线互相平行; 一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;平行内, 一条直线不可能与两条相交
8、直线都垂直,其中说法错误个数有( ) A.3个 B.2个 C.1个 D.0个四、解答题1.如图(17),是一条河,C河边AB外一点: (1)过点C要修一条与河平行的绿化带,请作出正确的示意图. (2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)2.如图(18),ABABD,CDMN,垂足分别是B、D点,FDC=EBA. (1)判断CD与AB的位置关系;(2)BE与DE平行吗?为什么? 3.如图(19),1+2=180,DAE=BCF,DA平分BDF. (1)AE与FC会平行吗?说明理由. (2)AD与BC的位置关系如何?为什么? (3)B
9、C平分DBE吗?为什么.4.在方格纸上,利用平移画出长方形ABCD的立体图,其中点D是D的对应点.(要求在立体图中,看不到的线条用虚线表示) 相交线与平行线C一、选择题:1如图(1)所示,同位角共有( ) A1对 B2对 C3对 D4对2下图中,1和2是同位角的是 A B C D3一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是( )A第一次向右拐40,第二次向左拐140B第一次向左拐40,第二次向右拐40C第一次向左拐40,第二次向右拐140D第一次向右拐40,第二次向右拐404如图(2)所示,AB,ABC=130,那么的度数为()A60 B50 C4
10、0 D30二、填空题:5如图(3)所示,已知AOB=50,PCOB,PD平分OPC,则APC=_,PDO=_6平行四边形中有一内角为60,则其余各个内角的大小为_,_,_。7如图(4)所示,OPQRST,若2=110,3=120,则1=_。三解答题:8如图(6),DEAB,EFAC,A=35,求DEF的度数。9如图(7),已知AEC=A+C,试说明:ABCD。 10.如图(19),1+2=180,DAE=BCF,DA平分BDF. (1)AE与FC会平行吗?说明理由; (2)AD与BC的位置关系如何?为什么? (3)BC平分DBE吗?为什么?本章总结本章主要讲述的知识点有相交线与平行线。其中相交
11、线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念。相交的一种特殊情况是垂直,两条直线交角成90。经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短。两条直线的另外一种关系是平行,平行就是指两条直线永不相交。平行线之间的距离处处相等。过直线外一点,作已知直线的平行线,有且只有一条。当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条
12、直线EF的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的
13、同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足12(或者34;57;68),就可以说AB/CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足62(或者54),就可以说AB/CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2180(或者6+4180),就可以说AB/CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1290就可以得到。平行线判定定理
14、5:两条直线同时平行于第三条直线,两条直线平行知识点相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4;邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以13。所以,对顶角相等例题:1.如图,3123,求1,2,3,4的度数。2.如图,直线AB、CD、EF相交于O,且,则_,_。垂直:垂直是相交的一种特殊情况
15、两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。如图所示,图中ABCD,垂足为O。垂直的两条直线共形成四个直角,每个直角都是90。例题:如图,ABCD,垂足为O,EF经过点O,126,求EOD,2,3的度数。(思考:EOD可否用途中所示的4表示?)垂线相关的基本性质:经过一点有且只有一条直线垂直于已知直线;连接直线外一点与直线上各点的所有线段中,垂线段最短;从直线外一点到直线的垂线段的长度,叫做点到直线的距离。例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?*线段的垂直平分线:垂直且平分一条线段的直线,叫做这条线段的垂直
16、平分线。如何作下图线段的垂直平分线?2.平行线:在同一个平面内永不相交的两条直线叫做平行线。平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。如上图,直线a与直线b平行,记作a/b3.同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;例题:如图,直线AB,CD,EF相交于O点,DOB是它的余角的两倍,AOE2DOF,且有OGOA,求EOG的度数。(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)如图所示
17、,直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;指出上图中的同位角,内错角,同旁内角。两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,
18、同位角相等; 两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。如上图,指出相等的各角和互补的角。例题:1.如图,已知12180,3180,求4的度数。2.如图所示,AB/CD,A135,E80。求CDE的度数。平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足12(或者34;57;68),就可以说AB/CD平行线判定定理2:内错角相等,两直线平行如图所示,只要满足62(或者54),就可以说AB/CD平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2180(或者6+4180),就可以说AB/CD平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1290就可以得到。例题:1.已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大班下学期教学计划
- 应急充电器行业相关投资计划提议范本
- Unit 2 My body Lesson 1(说课稿)-2024-2025学年人教新起点版英语三年级上册
- 2025年期末复习计划的日记:期末考试
- Unit 5 Fun Clubs Section B (1a-2b) 说课稿 2024-2025学年人教版(2024)七年级英语上册
- 2025年高二地理教学工作计划范例
- Unit 6 Useful numbers Part B Start to read(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2025年图书室工作计划
- 保险业技术工作总结
- Unit 3 Healthy Lifestyle Reading A Vocabulary Focus 说课稿 -2023-2024学年高中英语上外版(2020)必修第三册
- 山东师范大学新闻采访期末复习题
- 小王子-英文原版
- 让与担保合同协议范本
- 住宅设计效果图协议书
- 新版中国食物成分表
- 2024河南郑州市金水区事业单位招聘45人历年高频难、易错点500题模拟试题附带答案详解
- 食物损失和浪费控制程序
- TCI 373-2024 中老年人免散瞳眼底疾病筛查规范
- 2024四川太阳能辐射量数据
- 石油钻采专用设备制造考核试卷
- 法人变更股权转让协议书(2024版)
评论
0/150
提交评论