版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,ABC为钝角三角形,将ABC绕点A按逆时针方向旋转120得到ABC,连接BB,若ACBB,则CAB的度数为()A45B60C70D902关于x的
2、一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D03已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定4如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )ABCD5一个六边形的六个内角都是120(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是()A13B14C15D166下列计算正确的是()Aa3a2aBa2a3a6C(ab)2a2b2D(a2)3a67如图,将ABC绕点B顺时针旋转60得DBE,点C的
3、对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()AADBCBDAC=ECBCDEDAD+BC=AE8下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x29如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A3a+2bB3a+4bC6a+2bD6a+4b10如图,已知是中的边上的一点,的平分线交边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE二、填空题(本大题共6个小题,每小题3分,共18分)11
4、在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m1,7),若线段AB与直线y2x1相交,则m的取值范围为_12一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_.13已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于_厘米14如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_15在ABC中,C=90,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则DEF的周长是_16计算:2111,2213,2317,24115,25131,
5、归纳各计算结果中的个位数字规律,猜测220191的个位数字是_三、解答题(共8题,共72分)17(8分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O的切线(2)若BC3,CD3,求弦AD的长18(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD小明在山坡的坡脚A处测得宣传牌底部D的仰角为60,沿山坡向上走到B处测得宣传牌顶部C的仰角为45已知山坡AB的坡度i1:,AB10米,AE15米,求这块宣传牌CD的高度(测角器的高度忽略不计,结果精确到0.1米参考数据:1.414,1.732)19(8分)
6、如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.20(8分)如图,以ABC的边AB为直径的O与边AC相交于点D,BC是O的切线,E为BC的中点,连接AE、DE求证:DE是O的切线;设CDE的面积为 S1,四边形ABED的面积为 S1若 S15S1,求tanBAC的值;在(1)的条件下,若AE3,求O的半径长21(8分)如图,AB是O的直径,点C是AB的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交O于点H,连
7、接BH求证:BD是O的切线;(2)当OB2时,求BH的长22(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.23(12分)已知:a+b4(1)求代数式(a+1)(b+1)ab值;(2)若代数式a22ab+b2+2a+2b的值等于17,求ab的值24有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象
8、未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】已知ABC绕点A按逆时针方向旋转l20得到ABC,根据旋转的性质可得BAB=CAC=120,AB=AB,根据等腰三角形的性质和三角形的内角和定理可得ABB=(180-120)=30,再由ACBB,可得CAB=ABB=30,所以CAB=CAC-CAB=120-30=90故选D2、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a2
9、10,求出a的值即可【详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑3、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系4、B【解析】过F作FHAD于H,交ED于O,于是得
10、到FH=AB=1,根据勾股定理得到AF=,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论【详解】过F作FHAD于H,交ED于O,则FH=AB=1BF=1FC,BC=AD=3,BF=AH=1,FC=HD=1,AF=,OHAE,=,OH=AE=,OF=FHOH=1=,AEFO,AMEFMO,=,AM=AF=,ADBF,ANDFNB,=,AN=AF=,MN=ANAM=,故选B【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线5、C【解析】解:如图所示,分别作直线AB、
11、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120,所以六边形ABCDEF的每一个外角的度数都是60所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C6、D【解析】各项计算得到结果,即可作出判断解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a22ab+b2,不符合题意;D、原式=a6,符合题意,故选D7、C【解析】利用旋转的性质得BA=BD,BC=BE,ABD=CBE=60,C=E,再通过判断ABD为等边三角形得到AD=AB,BAD=60,则根据平行线的性质可判断ADBC,从而得到DAC=C,于是可
12、判断DAC=E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用CBE=60,由于E的度数不确定,所以不能判定BCDE【详解】ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB的延长线上,BA=BD,BC=BE,ABD=CBE=60,C=E,ABD为等边三角形,AD=AB,BAD=60,BAD=EBC,ADBC,DAC=C,DAC=E,AE=AB+BE,而AD=AB,BE=BC,AD+BC=AE,CBE=60,只有当E=30时,BCDE故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边
13、三角形的性质8、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二
14、次函数,据此求解即可.9、A【解析】根据这块矩形较长的边长边长为3a的正方形的边长边长为2b的小正方形的边长边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a2b+2b2=3a2b+4b=3a+2b故这块矩形较长的边长为3a+2b故选A【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.10、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错
15、误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角二、填空题(本大题共6个小题,每小题3分,共18分)11、4m1【解析】先求出直线y7与直线y2x1的交点为(4,7),再分类讨论:当点B在点A的右侧,则m43m1,当点B在点A的左侧,则3m14m,然后分别解关于m的不等式组即可【详解】解:当y7时,2x17,解得x4,所以直线y7与直线y2x1的交点为(4,7),当点B在点A的右侧,则m43m1,无解;当点B在点A的左侧,则3m14m,解得4m1,所以m的取值范围为4m1,故答案为4m1【点睛】本题考查了一次函数图象上点的坐标
16、特征,根据直线y2x1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键12、 【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,故答案为13、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】线段c是线段a和线段b的比例中项,解得(线段是正数,负值舍去),故答案为:1【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.14、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求
17、得的正切值【详解】延长GF与CD交于点D,过点E作交DF于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.15、6【解析】首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可【详解】解:RtABC中,C=90,AC=3,BC=4,AB=AC2+BC2=32+42=5,点D、E、F分别是边AB、AC、BC的中点,DE=12BC,DF=12AC,EF=12AB,CDEF=DE+DF+EF=12BC +12AC +12AB =12 (BC+AC+AB)=12(4+3+5)=6.故答案为:6.【点睛】本题考查了勾股定理和三角形
18、中位线定理.16、1【解析】观察给出的数,发现个位数是循环的,然后再看20194的余数,即可求解【详解】由给出的这组数2111,2213,2311,24115,25131,个位数字1,3,1,5循环出现,四个一组,201945043,220191的个位数是1故答案为1【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键三、解答题(共8题,共72分)17、(1)证明见解析(2) 【解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论;(2)由CDBCAD,可得,推出CD2=CBCA
19、,可得(3)2=3CA,推出CA=6,推出AB=CABC=3,设BD=k,AD=2k,在RtADB中,可得2k2+4k2=5,求出k即可解决问题【详解】(1)证明:连结OC,如图,AD平分EAC,1=3,OA=OD,1=2,3=2,ODAE,AEDC,ODCE,CE是O的切线;(2)CDO=ADB=90,2=CDB=1,C=C,CDBCAD,CD2=CBCA,(3)2=3CA,CA=6,AB=CABC=3,,设BD=k,AD=2k,在RtADB中,2k2+4k2=5,k=,AD=18、2.7米【解析】解:作BFDE于点F,BGAE于点G在RtADE中tanADE=,DE=AE tanADE=1
20、5山坡AB的坡度i=1:,AB=10BG=5,AG=,EF=BG=5,BF=AG+AE=+15CBF=45CF=BF=+15CD=CF+EFDE=201020101.732=2.682.7答:这块宣传牌CD的高度为2.7米19、(1)作图见解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出ABC;(3)直接利用(2)中图形求出三角形面积即可详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:ABC即为所求;(3)SABC=48=1点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位
21、置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形20、(1)见解析;(1)tanBAC;(3)O的半径1【解析】(1)连接DO,由圆周角定理就可以得出ADB=90,可以得出CDB=90,根据E为BC的中点可以得出DE=BE,就有EDB=EBD,OD=OB可以得出ODB=OBD,由等式的性质就可以得出ODE=90就可以得出结论(1)由S1=5 S1可得ADB的面积是CDE面积的4倍,可求得AD:CD=1:1,可得则tanBAC的值可求;(3)由(1)的关系即可知,在RtAEB中,由勾股定理
22、即可求AB的长,从而求O的半径.【详解】解:(1)连接OD,ODOBODBOBDAB是直径,ADB90,CDB90E为BC的中点,DEBE,EDBEBD,ODB+EDBOBD+EBD,即EDOEBOBC是以AB为直径的O的切线,ABBC,EBO90,ODE90,DE是O的切线;(1)S15 S1SADB1SCDBBDCADBDB1ADDCtanBAC (3)tanBAC,得BCABE为BC的中点BEABAE3,在RtAEB中,由勾股定理得,解得AB4故O的半径RAB1【点睛】本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三
23、角形的判定和性质,解答时正确添加辅助线是关键21、(1)证明见解析;(2)BH125【解析】(1)先判断出AOC=90,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是AB的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OCBF=OEEB,OB2,OCOB2,AB4,OEEB=23,2BF=23,BF3,在RtABF中,ABF90,根据勾股定理得,AF5,SABF
24、12ABBF12AFBH,ABBFAFBH,435BH,BH125【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键22、(1);(2)1或9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m.由得, x2(5m)x80.(5m)2480,解得m1或9.点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装监控合同范例6
- 关于学校房屋合同范例
- 夫妻房产赠与合同范例
- 产权加盟代理合同范例
- 市区临街房屋租赁合同模板
- 2024年房地产开发合同具体执行方案
- 家电仓库托管合同范例
- 农村地基租赁合同模板
- 家园转让建筑合同范例
- 会所装修商务合同范例
- 小学道德与法治六年级上册第5课《国家机构有哪些》测试题
- PLC控制的自动花样音乐喷泉系统设计毕业设计论文
- 建筑公司组织架构及岗位职责
- COPD诊疗新进展
- 精品资料(2021-2022年收藏的)病案管理制度全套
- 低压工作票(共3页)
- 2阀门结构和工作原理(上)
- 基础图案设计(课堂PPT)
- 食堂操作工艺流程图
- 幼儿园参观学校活动方案5篇
- 关于旅游景区游客满意度研究的文献综述
评论
0/150
提交评论