




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D82的立方根是( )A8B4C2D不存在3如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD34已知x=23,则代数式
2、(7+43)x2+(2+3)x+ 3 的值是()A0B3C2+3D235一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限6如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D107下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平行B对角线相等且互相垂直的四边形是正方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形8用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD9在实数,有理数有( )A1个B2个
3、C3个D4个10已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x311如图,在矩形ABCD中,AB=2,BC=1若点E是边CD的中点,连接AE,过点B作BFAE交AE于点F,则BF的长为()ABCD12若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx5二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,P为的边OA上一点,且P点的坐标为(3,4),则sin+cos=_14分式方程=1的解为_15不等式组的最大整数解为_16观察下列各等式:根据以上规律可知第11行左起第
4、一个数是_173的倒数是_18函数的图象不经过第_象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在RtABC中,ACB=90,以AC为直径的O与AB边交于点D,过点D作O的切线交BC于点E求证:BE=EC填空:若B=30,AC=2,则DE=_;当B=_度时,以O,D,E,C为顶点的四边形是正方形20(6分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;21(6分)如图,在四边形A
5、BCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF(1)证明:BAC=DAC(2)若BEC=ABE,试证明四边形ABCD是菱形22(8分)先化简,再求值:(x+1y)1(1y+x)(1yx)1x1,其中x+1,y123(8分)如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点的坐标24(10分)如图,已知抛物线
6、经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.25(10分)在ABCD中,过点D作DEAB于点E,点F在边CD上,DF=BE,连接AF,BF(1)求证:四边形DEBF是矩形;(2)若AF平分DAB,AE=3,BF=4,求ABCD的面积26(12分)如图,在O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作O切线DF,连接AC并延长交DF于点E(1)求证:AEEF;(2)若圆
7、的半径为5,BD6 求AE的长度27(12分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心
8、角度数是解题的关键.2、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案详解:, 的立方根为2,故选C点睛:本题主要考查的是算术平方根与立方根,属于基础题型理解算术平方根与立方根的含义是解决本题的关键3、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键4、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=23时,(7+43)x2+
9、(2+3)x+ 3(7+43)(23)2+(2+3)(23)+ 3(7+43)(7-43)+1+ 349-48+1+32+3故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算5、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.6、B【解析】解:根据三视图得到该几何体为
10、圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图7、D【解析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbca
11、b,2a22b22c2-2ac-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.8、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A9、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D考点:有理数10、B【解析】试题分析:观察图象可知,抛物线y=x2bx
12、c与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象10614411、B【解析】根据SABE=S矩形ABCD=1=AEBF,先求出AE,再求出BF即可【详解】如图,连接BE四边形ABCD是矩形,AB=CD=2,BC=AD=1,D=90,在RtADE中,AE=,SABE=S矩形ABCD=1=AEBF,BF=故选:B【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型12、C【解析】根据函数图象知:一次函数过点(2,0);将此点
13、坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据正弦和余弦的概念求解【详解】解:P是的边OA上一点,且P点坐标为(3,4),PB=4,OB=3,OP= =5,故sin= = , cos= ,sin+cos=,故答案为【点睛】此题考
14、查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边14、x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=60,所以分式方程的解为x=1,故答案为:x=1点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验15、1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解【详解】,解不等式得:x1,解不等式得x-11x,x-1x1,-x1,x-1,不等式组的
15、解集为x-1,不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.16、-1【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9.第n行=n2,第11行=112=121,又左起第一个数比右侧的数大一,第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.17、【解析】乘积为1的两数互为相反数,即a的倒数即为,符号一致【详解】3的倒数是 答案是18、三.【解析】先根据一次函数判断出函数图象经过的象限,进而可得出结论.【详解】解:一次函数中
16、,此函数的图象经过一、二、四象限,不经过第三象限,故答案为:三.【点睛】本题考查的是一次函数的性质,即一次函数中,当,时,函数图象经过一、二、四象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)3;1.【解析】(1)证出EC为O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)由含30角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;由等腰三角形的性质,得到ODA=A=1,于是DOC=90然后根据有一组邻边相等的矩形是正方形,即可得到结论【详解】(1)证明:连接DO
17、ACB=90,AC为直径,EC为O的切线;又ED也为O的切线,EC=ED,又EDO=90,BDE+ADO=90,BDE+A=90又B+A=90,BDE=B,BE=ED,BE=EC;(2)解:ACB=90,B=30,AC=2,AB=2AC=4,BC=6,AC为直径,BDC=ADC=90,由(1)得:BE=EC,DE=BC=3,故答案为3;当B=1时,四边形ODEC是正方形,理由如下:ACB=90,A=1,OA=OD,ADO=1,AOD=90,DOC=90,ODE=90,四边形DECO是矩形,OD=OC,矩形DECO是正方形故答案为1【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等
18、知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型20、(1);(2)或;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积【详解】(1)二次函数与轴的交点为和设二次函数的解析式为:在抛物线上,3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=x22x3,二次函数的对称轴为直线; 点、是二次函数图象上的一对对称点;使一次函数大于二次函数的的取值范围为或;(3)设直线BD:ymxn,代入B(1,0),D(2,3)得,解得:,故
19、直线BD的解析式为:yx1,把x0代入得,y=3,所以E(0,1),OE1,又AB1,SADE13111【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键21、证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得ABCADC,由此可得BAC=DAC,再证ABFADF即可得到AFB=AFD,结合AFB=CFE即可得到AFD=CFE;(2)由ABCD可得DCA=BAC结合BAC=DAC可得DCA=DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在ABC和ADC中,AB
20、=AD,CB=CD,AC=AC,ABCADC,BAC=DAC,在ABF和ADF中,AB=AD,BAC=DAC,AF=AF,ABFADF,AFB=AFD(2)证明:ABCD,BAC=ACD,BAC=DAC,ACD=CAD,AD=CD,AB=AD,CB=CD,AB=CB=CD=AD,四边形ABCD是菱形22、2【解析】【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1(2y1x1)1x1=x1+2xy+2y12y1+x11x1=2xy,当x=+1,y=1时,原式=2(+1)(1)=2(32)=2【点睛】本题考查了整式
21、的混合运算化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.23、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6
22、,1)分别代入ykx+b,得:,解得:,所以一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时,得到OE12OD4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键24、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点
23、的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用25、(1)证明见解析(2)3【解析】试题分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校方责任赔付协议书
- 土地信息咨询协议书
- 入室抢劫调解协议书
- 居室房屋出售协议书
- 暖气安装人工协议书
- 离婚之后变更协议书
- 闲置公司收购协议书
- 政府石料处置协议书
- 摊点卫生管理协议书
- 快速处理保险协议书
- 2025-2030全球及中国军事无线电系统行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 配电工程施工方案
- 2025年中国光纤放大器行业竞争格局及市场发展潜力预测报告
- 护理礼仪中的称呼礼仪
- 2025年浙江纺织服装职业技术学院单招职业适应性测试题库新版
- 2024年河北省普通高中学业水平选择性考试物理试题含答案
- Unit 4 Healthy food(说课稿)-2024-2025学年人教PEP版(2024)英语三年级下册
- 2025年全国叉车证理论考试题库(含答案)
- 99S203 消防水泵接合器安装图集
- DB13T 5461-2021 连翘种子种苗质量标准
- Q∕SY 04797-2020 燃油加油机应用规范
评论
0/150
提交评论