




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则( )A2BCD32设函数,则,的大致图象大致是的( )ABCD3已知,满足约束条件,则的最大值为ABCD4某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地
2、球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )ABCD5若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D56已知等差数列的前项和为,且,则( )A45B42C25D367设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是( )ABCD8已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D6749已知 ,且是的充分不必要条件,则的取值范围是( )ABCD10一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) ABCD11如图,在正四棱柱中,分别为的中点,异面直线与所成角的余弦值为,则( )
3、A直线与直线异面,且B直线与直线共面,且C直线与直线异面,且D直线与直线共面,且12港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间85,90)的车辆数和行驶速度超过90km/h的频率分别为()A300,B300,C60,D60,二、填空题:本题共4小题,每小题5分,共20分。13已知集合,.若,则实数a的值是_.14已知直线与圆心为的圆相交于两点,且,则实数的
4、值为_15已知数列是等比数列,则_.16执行右边的程序框图,输出的的值为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值18(12分)在中,设、分别为角、的对边,记的面积为,且(1)求角的大小;(2)若,求的值19(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.20(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,求证:(1)平面;(2)平面平面21(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得函数在区间上的值域为?
5、若存在,求实数k的取值范围;若不存在,请说明理由22(10分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】利用分段函数的性质逐步求解即可得答案【题目详解】,;故选:【答案点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用2、B【答案解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项
6、C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【答案点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.3、D【答案解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【题目详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【答
7、案点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法4、A【答案解析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,( c为半焦距; a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,故选:A【答案点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.5、D【答案解析】根据复数的四则运算法则先求出复数z,再计算它的模长【题目详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi
8、),即,解得a3,b4,z3+4i,|z|故选D【答案点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题6、D【答案解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【题目详解】由题,.故选:D【答案点睛】本题考查等差数列的性质,考查等差数列的前项和.7、B【答案解析】由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像.【题目详解】函数在上可导,其导函数为,且函数在处取得极大值,当时,;当时,;当时,.时,时,当或时,;当时,.故选:【答案点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为
9、负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.8、B【答案解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【题目详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【答案点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解9、D【答案解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取
10、值的集合是中变量取值集合的真子集.【题目详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【答案点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.10、C【答案解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案【题目详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:【答案点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状11、B【答案解析】连接,由正四棱柱的特征可知,再由平面的基本性质可知,直线与
11、直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【题目详解】如图所示:连接,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,由余弦定理,得.故选:B【答案点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.12、B【答案解析】由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率【题目详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,在此路段上汽车行驶速度在区间的车辆数为:,
12、行驶速度超过的频率为:故选:B【答案点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、9【答案解析】根据集合交集的定义即得.【题目详解】集合,则a的值是9.故答案为:9【答案点睛】本题考查集合的交集,是基础题.14、0或6【答案解析】计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【题目详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【答案点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。15、【答案解析】根据等比数列通项公式,
13、首先求得,然后求得.【题目详解】设的公比为,由,得,故.故答案为:【答案点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.16、【答案解析】初始条件成立方 ;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)特征值为或【答案解析】(1)先设矩阵,根据,按照运算规律,即可求出矩阵.(2)令矩阵的特征多项式等于,即可求出矩阵的特征值【题目详解】解:(1)设矩阵由题意,因为,所以 ,即所以,(2)矩阵的特征多项式,令,解得或,所以矩阵的特征值为1或【答案点睛】本
14、题主要考查矩阵的乘法和矩阵的特征值,考查学生的划归与转化能力和运算求解能力.18、(1);(2)【答案解析】(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值【题目详解】解:(1)由,得,因为,所以,可得:(2)中,所以.所以:,由正弦定理,得,解得,【答案点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题19、 (1);(2) .【答案解析】分析:(1)先根
15、据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围详解:(1)当时,可得的解集为(2)等价于而,且当时等号成立故等价于由可得或,所以的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向20、(1)详见解析;(2)详见解析.【答案解析】(1) 连结根据中位线的性质证明即可.(2) 证明,再
16、证明平面即可.【题目详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,平面平面,平面平面【答案点睛】本题主要考查了线面平行与垂直的判定,属于基础题.21、 (1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【答案解析】分析:(1)利用导数研究函数的单调性,可得当时, 取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间
17、内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时, ,函数单调递增;当时, ,函数单调递减.所以当时, 取得极大值,也是最大值,所以,解得. (2)的定义域为. 即,则,故在单调增若,而,故,则当时,; 当及时,故在单调递减,在单调递增若,即,同理在单调递减,在单调递增(3)由(1)知, 所以,令,则对恒成立,所以在区间内单调递增, 所以恒成立,所以函数在区间内单调递增. 假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根, 即方程在区间内是否存在两个不相等的实根,令, ,则,设, ,则对恒成立,所以函数在区间内单调递增, 故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度北京市有毒有害物品仓储服务合同范本
- 小区车库代购合同范本
- 单位建食堂合同范本
- 基于研究方法与关键技术的学术探讨
- 2025租房合同范例模板
- 《2025项目中介合同》
- 2025商业房产买卖合同示范文本
- 2025茶叶代理合同范例范本
- 语言与未来知到课后答案智慧树章节测试答案2025年春青岛工学院
- 2025建筑材料采购的合同范本
- 2025年山东省东营市广饶县一中中考一模英语试题(原卷版+解析版)
- 浙江省宁波市镇海中学2024-2025学年高考二模英语试题试卷含解析
- 高校班干部培训
- 房 产 税教学课件
- 2025年晋中职业技术学院单招职业适应性测试题库参考答案
- 【语言文字运用】考点45 逻辑推断(新增考点)(解析版)
- 2025年江苏苏北四市高三一模高考地理试卷试题(含答案详解)
- 《石油化工金属管道工程施工质量验收规范2023版》
- 浙江钱江生物化学股份有限公司招聘笔试冲刺题2025
- 智能制造能力成熟度模型(-CMMM-)介绍及评估方法分享
- 《静脉输液治疗》课件
评论
0/150
提交评论