辽宁省葫芦岛市高中名校2022年高考冲刺数学模拟试题含解析_第1页
辽宁省葫芦岛市高中名校2022年高考冲刺数学模拟试题含解析_第2页
辽宁省葫芦岛市高中名校2022年高考冲刺数学模拟试题含解析_第3页
辽宁省葫芦岛市高中名校2022年高考冲刺数学模拟试题含解析_第4页
辽宁省葫芦岛市高中名校2022年高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1已知i为虚数单位,则( )ABCD2设Py |yx21,xR,Qy |y2x,xR,则AP QBQ PCQDQ 3已知函数,若对,且,使得,则实数的取值范围是( )ABCD4若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD5集合,则=( )ABCD6已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为( )ABCD7椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃

3、厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )ABCD8已知复数z,则复数z的虚部为( )ABCiDi9已知某几何体的三视图如右图所示,则该几何体的体积为( )A3BCD10设,则关于的方程所表示的曲线是( )A长轴在轴上的椭圆B长轴在轴上的椭圆C实轴在轴上的双曲线D实轴在轴上的双曲线11运行如图程序,则输出的S的值为() A0B1C2018D201712已知,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知在等差数列中,前n项和为,则_.14如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数

4、解析式为_15在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为_16(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.18(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,求证:.19(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.20(12分)在直角坐标系中,直线的参数方程为为参数)

5、,直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,点为射线与曲线的交点,求点的极径.21(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.22(10分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:

6、A.【点睛】本题考查复数代数运算,属于基础题题.2C【解析】解:因为P =y|y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C3D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,

7、属综合困难题.4D【解析】利用复数代数形式的乘除运算化简,再由实部为求得值【详解】解:在复平面内所对应的点在虚轴上,即故选D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题5C【解析】先化简集合A,B,结合并集计算方法,求解,即可【详解】解得集合,所以,故选C【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小6C【解析】设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【点睛】本小题主要

8、考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.7C【解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.8B【解析】利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计

9、算能力,属于基础题.9B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:直三棱柱的体积为,消去的三棱锥的体积为,几何体的体积,故选B. 点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.10C【解析】根据条件,方程即,结合双曲线的标准方程的特征判断曲线的类型【详解】解:k1,1+k0,k2-10,方程,即,表示实轴在y轴上的双曲线,故选C【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键11D【解析

10、】依次运行程序框图给出的程序可得第一次:,不满足条件;第二次:,不满足条件;第三次:,不满足条件;第四次:,不满足条件;第五次:,不满足条件;第六次:,满足条件,退出循环输出1选D12B【解析】由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得 ,又,所以,结合解得,所以 ,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。1339【解析】设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首

11、项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.14,【解析】根据图象得出该函数的最大值和最小值,可得,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,从题图中可以看出,从时是函数的半个周期,则,.又,得,取,所以,故答案为:,【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.15【解析】根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空

12、间直角坐标系:设正方体的棱长为1,则 所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.16【解析】由题意,则,得由题意可设的方程为,联立方程组,消去得,恒成立,则,点到直线的距离为,则,又,则,当且仅当即时取等号故面积的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,

13、即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,当时,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标,考查计算能力.18(1),.(2)见解析【解析】(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,即,由,得,当且仅当,即,时等号成立

14、.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19(1)(2)【解析】(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长【详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力20(1);(2)【解析】(1)将两直线

15、化为普通方程,消去参数,即可求出曲线的普通方程;(2)设Q点的直角坐标系坐标为,求出,代入曲线C可求解.【详解】(1)直线的普通方程为,直线的普通方程为联立直线,方程消去参数k,得曲线C的普通方程为整理得.(2)设Q点的直角坐标系坐标为,由可得代入曲线C的方程可得,解得(舍),所以点的极径为.【点睛】本题主要考查了直线的参数方程化为普通方程,普通方程化为极坐标方程,极径的求法,属于中档题.21(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论