下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于几何画板的初中数学教学的实践探索摘要:几何画板作为信息技术与数学教学整合的主要工具,具有灵活的绘图功能,并能对图形的几何变换进行动态演示,增强了学习的直观效果,这些教学能效在传统的笔纸环境中是难以达到的。几何画板在辅助数学教学方面的独特优势开创了教与学的新方式,有助于教师成为学生学习的引导者,有助于学生成为主动获取知识的探索者。本文结合教学案例,从数形结合实验探究、辅助变式三方面来论述几何画板在初中数学教学中的实践运用,旨在为广大数学教师优化课堂教学提供一些借鉴或启示。关键词:几何画板;数学教学;整合;实践全日制义务教育数学课程标准指出:现代信息技术的发展对数学教育的价值、目标、内容以及学
2、与教的方式产生了重大的影响。把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。几何画板是信息技术与数学教学整合的主要工具之一,其快捷精准的绘图、智能的几何变换、直观的动态演示等功能,为学生创造了一个探索几何图形内在关系的环境,让学生在观察、探索、发现的过程中深化对各种图形的感性认识,形成丰富的几何认知经验,促进对数学问题的深入理解和思考。几何画板为学生探索知识增添了更多的途径,同时也为教师研究教学开辟了更广的空间。在初中数学课堂教学中如何充分发挥几何画板的功能优势,优化课堂教学,成为当前新课程改革中值得探
3、索的一个问题。下面笔者结合案例,谈一谈几何画板在初中数学教学中的实践运用。一、揭示数形关系,优化思维品质数(数量关系)与形(空间形式)是数学教学中的两大基本内容。数形结合思想贯穿于整个中学数学教材体系之中,它是重要的数学思想方法之一。华罗庚说过:“数缺形时少直觉,形缺数时难入微”,也就是说数与形之间相辅相成:以形助数,可以化抽象为直观;以数辅形,可以化直观为精确。在传统的数学教学中,因受教学条件的限制,数与形很难真正地完美结合特别是有些蕴藏在数量关系背后的几何意义很难直观地展现出来。而几何画板凭借其强大的功能优势弥补了这一不足,能化隐为显,化静为动,直观地反映数、形的同步变化,为学生提供一个探
4、索和构建数学模型的平台,从而帮助学生优化思维品质,简化解题过程,提高学习效率。【案例1】有一张三角形纸片ABC,其中BC=6,ZC=90,ZA=30。(1)如图1,若用这张纸片裁剪出一个矩形CDEF,使点D、E、F分别落在AC、AB、BC上,且使矩形CDEF的面积最大,则点E应选在何处?(2)如图2,若用这张纸片裁剪出一个矩形DEFG,使点D、G分别落在AC.BC上,点E、F均在AB上,且使矩形DEFG的面积最大,则点E应选在何处?图1图2对于上述题组,建立恰当的数学模型是解解决该问题的关键,而学生很难找到解题的突破口,因而退避三舍。这里运用几何画板就能有效突破难点,几何画板为学生寻求解题模型
5、提供了便利。第(1)问中,若假设AE的长为x,则矩形CDEF的面1一一积可表示为y=-V3x2+3、x,用几何画板构造动点P(x,y),再运用动点追踪功能,就能直观地演示当点E在线段AB上运动时,动点P的运动轨迹(如图3),帮助学生快速建立二次函数模型来解题。第(2)问中,也可以设AE的长为x,则矩4-L形CDEF的面积可表示为y=-*3x2+4y3x,类似地用几何画板直观地演示动点P(x,y)的运动轨迹(如图4)。用几何画板将数、形之间的关系动态地展示出来,活跃了学生的思维活动,使抽象的数学知识变得生动形象,容易接受。900705432-7Xp=6.0、卷形CDEF=厲伍Pt(&0,15.6
6、)B234567891011拖动点E臥改变拒形的形狀拖动点E臥改变矩形的册状二、探究数学实验,把握问题本质学习和研究数学不仅需要演绎、推理,也需要实验、归纳。数学实验作为一种新颖的数学研究方法,已成为中学数学学习的一种新形式。广义的数学实验是指在特定的实验条件下,实验者为了解决某个未知问题,验证某个数学猜想,获取某个数学结论,运用一定的技术手段或工具,并以数学理论和数学思想为指导,将实验对象进行数学化的处理,从而解释数学现象、理解数学内容或构建数学知识的一类数学研究活动。进行数学教学时,既要关注数学内容抽象化、形式化的一面,还要关注数学发现过程中经验化、具体化的一面,为此可以利用几何画板进行数
7、学实验,辅助学生把握数学问题的结构特点,认清数学本质【案例2】图5“中点四边形”的探究过程了良速地画功状时CC对角线互相垂直几何画板为学生进行数学实验创造好的条件,利用其实时度量功能,能快为学生提供精准的度量数据,利用其动能,可以动态地展示任意改变四边形形某些几何元素的变化情况,这有利于学在初中数学“中点四边形”的探究活动中,教师可以运用几何画板引导学生探究中点四边形的特征,探究的过程如图5所示。生发现问题背后所隐藏的规律。教学时,先用“几何画板”课件进行演示,通过点击不同的按钮来改变四边形的对角线的位置关系与数量关系(如图6),让学生观察中点四边形EFGH的形状是如何变化的,它与原四边形AB
8、CD的哪些量有关系,然后引导学生归纳出隐藏在现象背后的规律。这些实验操作既让学生体验了由特殊到一般、由一般到特殊的数学研究过程,又让学生进一步理解和掌握了四边形的有关知识。几何画板所呈现的丰富的动态图形,极大地开阔了学生的视野,给学生提供了更多“发现”的机会。三、辅助变式教学,提升课堂效率变式教学是促进数学学习的一种有效的教学方式,长期以来被数学教师广泛地用于教学之中。在现代信息技术不断发展的背景下,重新审视数学变式教学,对培养学生的创新思维能力有着深远的意义。几何画板所具有的图形动画处理、几何变换、自动推理、符号计算等功能,为数学变式教学创造了一个简易、快捷的智能操作平台。在数学变式教学中,
9、利用几何画板从不同层次、不同角度、不同途径、不同背景这四方面变更数学对象的内容或形式,引导学生从变化的现象中抓住不变的本质,从不变的本质中探索变化的规律,让学生经历数学知识的发生、发展及形成的过程,强化对知识结构的认识,增加思维活动的经验,提高分析问题和解决问题的技能。【案例3】如图7,已知ZAOB=90,P为ZAOB的角平分线上一点,PC交AO于N,PD交BO于M。若ZPNO=ZPMO=90,则利用角平分线的性质易证:PM二PN。变式1:如图8,若保持ZCPD=90不变,将/CPD绕点P旋转,则PM与PN仍相等吗?变式2:如图9,若将题目背景改为P为等腰直角三角形斜边AB的中点,/CPD绕点
10、P旋转,并保持ZCPD=90不变,贝PM与PN仍相等吗?”,条件“ZPNO=ZPMO=90”改变式3:如图10,若将已知条件“ZAOB=90”改为“ZAOB=(0oa180)为“ZPNO+ZPMO=180”,其它条件不变,结论还成立吗?4:如图为正多边仍保持图8图9图10其它条件不变,结论还成立吗?ZPNO+ZPMO=180,在初中阶段存在一些典型的几何变换问题,由于传统的变式教学无法直观、形象地演示图形的变化过程,使得学生的认知不能深入到问题的内部本质,此时可借助几何画板的几何变换、动画等功能,将几何图形因条件改变而变化的过程从不同角度呈现出来。尽管图形的部分条件发生变化,但解题思路依然没变
11、,上述变式题组的基本模型如图14所示,其中一个直角三角形是由另一个直角三角形经过旋转而得到。利用几何画板的复制和动态模拟功能,可以从复杂图形中分离出基本模型,并使其与原图形保持同步变化,这样有助于学生认识图形,学会从基本模型入手寻找解题的突破口,从而收到触类旁通、举一反三的效果。数学教学中合理地整合几何画板,能让学生真正参与问题的解决过程,体验知识的形成过程,构建清晰的认知结构,深刻地理解和掌握数学知识。几何画板丰富了教学的手段,给数学教学注入了新的活力,使得在传统的笔纸环境中无法开展的数学探究活动能真正开展起来,更重要的是它使抽象、枯燥的数学变得直观、形象,激发了学生的学习兴趣,有助于学生从传统的被动式学习向主动式学习转换。但值得注意的是,教学中不能用几何画板完全代替教师的板书和学生的思维训练,几何画板只能视为辅助教师解决教学难点问题、提高教学效率、辅助学生思维的工具。随着课程改革的不断推进,日新月异的信息技术必然会促进数学课堂教学模式的变化。如何在教学中恰到好处地运用几何画板,更好地优化数学课堂教学,仍需要教育工作者
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论