




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、7. Intrinsic ConstantsIntrinsic constants in general media As mentioned previously, the wave number k (the intrinsic wave number) and the intrinsic impedance 门 (the intrinsic wave impedance) are defined byk = (-Z0)宁0) and 门=wherez (w)= jtofi 0)y()=s ()+ j我 0)and0) = + j咬一2 +|10)= R + jR _2R +cy 0) =
2、 b + jb 2b + To solve k = J-Zy and 门=JZ y for Z and y, one obtains the compleximpedance Z and the complex admittance y asProofkn = % - yZ = = - Z 2Z 2 = -k2门 2andk2 y2 = 门2 Therefore a knowledge of the wave number k and the intrinsic impedance 门 is equivalent to the knowledge of the complex impedanc
3、e Z and thecomplex admittance y, or to the knowledge of , Q, 6, s, in other wordsthe knowledge of k and 门 specifies the characteristics of the medium. Both the wave number k and the intrinsic impedance 门 are complex, andmay be written ask =厂 zy = k- jk y=r+jx=”, En=正=yin terms of which, the +z-propa
4、gated traveling plane wave becomes,E = e E e - jkzx 0=e El e-j(k-jk“)zx 0ri.=e E e-jk ze-k zx0ande- jkz.=e o e - j(kk - jk )ze- jy间-E=eo e - j Ik z+Oe-k%y间where k is termed the phase constant, which gives rise to a variation of thewave phase,。-狄 2.k is termed the attenuation constant, which causes a
5、n exponential attenuation of the wave amplitude, e-k%.In addition to the wave number k = k 一 jk”, another parameter defined by y = jk =以 + j P and called the propagation constant is often utilized in some textbooks.It is easy to show that a = k is the attenuation constant, and P = k is the phase con
6、stant. In facty = jk=a + j p= j(k,- jk) =k + jk kNamely, the wave number k and the propagation constant y are related byk = -jy = k - jk = p - jaandy = jk =a + j p = k+ jkIt is physically understood that for a z-propagated and attenuated plane wave,e - jk = e - k%e - jk z = e -a ze - jP z = e -y zbo
7、th the attenuation constant a = k and the phase constant P = k should be positive, and this is why the wave number is denoted by k = k - jk rather than by k = k + jk , and the propagation constant is denoted by y =a + jP rather than by y = a - jP .Intrinsic constants in lossy media For lossy media,
8、the material parameters are assumed to be independent of frequency, TOC o 1-5 h z () = + j咬一2 += |10)= R + jR _2R += Rcy 0) = b + jb 2b += bThe complex impedance /(3 ) and the complex admittance (w )areZ ()= jR (3)= j3Ry(3) = C (3)+ j30) = b + j3The wave number isk = k - jkJ f=寸一 yz=- (c + j38 )(j3R
9、)=J-( j3 )(j3R)= 3.rwhere =8r-j8r = 8 , = C3The phase constant k and the attenuation constant k are determined as follows.k 2 = (k,- jk )2=(k 2 - k 2)- j(2kk )=3 2 r8=3 2 R(8,- j8 )thenk2 -k 2 =32R8 2k k = 3 2 R8 thenk =(2k,)then妙2 CD2|LIF(2A) 2 =C02 时4”4 一4(2四%2 Co2|H) = 0then4(02 m2JL18/ +16 原8CD2
10、|Ll,2thenthenthenThe intrinsic impedance isThe intrinsic resistance R and the intrinsic reactance X are determined as follows.,1 )2-2 R 庞2+时 2m2 + 2n = r+jx = 一-一V-庞thenn 2 = (r+jx )=(r 2 X 2)+ j 2 RX= 曰-j=日(+ j ) 2 + 2陀 . 卜 2 + 2 + j 2 +, 2then网R 2 - X 2 = 2 + 2c日2 RX = 2 + 2then(1 A UX = 2R 兴 2 +2
11、thenthenphLe2 + ”2 JpL e2 +2 j、2+16V8 2 +8 2 J、2=03 j2 V8 2 +8 2 J、82 +81 ) 四 W + 8 2 +82 )then2Q 2 +8 2 )R =.8R 2 - X 2 = 8 2 +8 2then四(+8 2 +8 2)日82(8 2 + 8 2 )8 , 2 + 8 2pX + F8 2 +8 2 )2(8,2 +82 )then2 +8 2 -8r) 2 V8 2 +8 2 )P=工= 281 +(8 8)2 The magnitude and the phase 匚 of the intrinsic impedan
12、ce 门 aredetermined as follows.hl =R 2 + X 2Ji+G +1 + Ji+Gw)2 -11 + (e” 8P)1(1 +(88少1 +(8 8)+1=tan-1=tan-1and(/2: +(88少- +(88少28 The intrinsic constants in a simple lossy medium are summarized as follows.k = k jk = P ja =侦|H8k,=p22,8、21 +1WJk =a=wandJ】+(8宾)2 28,,(时:(1 +(8 8小28回=侦1 +(8 8匚=tan-1(8 8少wh
13、ere8=8Intrinsic constants in perfect dielectrics (loss-free) For perfect dielectrics, the complex permittivity isb 8,8 = 0, 8 = 8 j8 = 8 , namely tan 5 =08 8, The wave number isk = k jk = P jawherePU8, =W - 2=叭,四8,=0The intrinsic impedance iswhereR =:1 +(1+; 1)Ji Izx:1 +()旦匚=tan-i、/1+(.* 少-1、顼 +(,+1
14、D.Intrinsic constants in good dielectrics (low loss)For good dielectrics, the complex permittivity isb 时 = j , , namely tan8 =一I8,:1 +(8 8人匚=tan-i机 tan-i机 tan-iE2sJ=tan-iE. Intrinsic constants in good conductors (high loss). The complex permittivity for good conductors isb&=-j& , & & , namely tan8 =
15、一 1 . The wave number iswhere1V;8 2 + 2 +8k =以The intrinsic impedance for good conductors isn = R+jX = |n|e力whereR=1戛丁_ m “:#2+8% +8=?82 +82口: p82 +8气*二n工28曰铲V2c匚=tan-i=tan-i=tan-i机 tan-i:(b 时+1 -(8r 时) p (? +1 +(,)(Eg) + 1一(矿时) 2 2(8七+1+(8七),/1)tan-1 -1)兀=4Problem 2-6A plane wave propagates in a seawater medium of = = 8 x10-s F:m,日=日 =4兀 x 10-7 Him , and b= 144兀 S/m. The working frequencies are assumed to be f1= 10kHz and / = 10GHz, respectively..5.Find the prop
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市产权交易合同
- 个人名下房产无偿合同
- 2025商业房产预租协议(合同版本)
- 2025商品交易合同(合同版本)
- 尊敬老师的名言(7篇)
- pvc地板胶合同标准文本
- 以风景为话题作文(3篇)
- 保险中合同范例
- 作为甲方合同标准文本
- 写好房产合同标准文本
- 山东大学教师外其他专业技术岗位招聘真题2024
- 函数与导数-2025高考数学大题突破(含答案)
- 2025年中考数学模拟试卷一(含详解)
- 小学生数据分析课件
- 术后镇痛规范与流程
- 影视短剧投资合作合同
- 眼科护理培训课件
- 2025年甘肃农垦集团招聘笔试参考题库含答案解析
- 2025年泰隆银行招聘笔试参考题库含答案解析
- 5.1导数的概念及其意义(同步练习)(含解析)-【一堂好课】2022-2023学年高二数学同步名师重点课堂(人教A版2019选择性必修第二册)
- 09《战国策》第八-整本书阅读系列《经典常谈》名著阅读与练习(解析版)
评论
0/150
提交评论