版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、材料力学压杆稳定性的概念和性质研究2实际的受压杆件 实际的受压杆件由于: 其轴线并非理想的直线而存在初弯曲,2. 作用于杆上的轴向压力有“偶然”偏心,3. 材料性质并非绝对均匀,因此在轴向压力作用下会发生弯曲变形,且由此引起的侧向位移随轴向压力的增大而更快地增大。第九章 压杆稳定3 对于细长的压杆(大柔度压杆),最终会因为弹性的侧向位移过大而丧失承载能力; 对于中等细长的压杆(中等柔度压杆)则当侧向位移增大到一定程度时会在弯压组合变形下发生强度破坏(压溃)。 对于实际细长压杆的上述力学行为,如果把初弯曲和材质不均匀的影响都归入偶然偏心的影响,则可利用大柔度弹性直杆受偏心压力作用这一力学模型来研
2、究。第九章 压杆稳定4 图a为下端固定,上端自由的实际压杆的力学模型;为列出用来寻求Fd 关系所需挠曲线近似微分方程而计算横截面上的弯矩时,需把侧向位移考虑在内,即 M(x)=F(e+d-w),这样得到的挠曲线近似微分方程EIz w=F(e+d -w)和积分后得到的挠曲线方程便反映了大柔度杆偏心受压时侧向位移的影响。第九章 压杆稳定(a)5 按照这一思路求得的细长压杆在不同偏心距 e 时偏心压力F 与最大侧向位移d 的关系曲线如图b所示。第九章 压杆稳定(b) 由图可见虽然偶然偏心的程度不同 (e3e2e1),但该细长压杆丧失承载能力时偏心压力Fcr却相同。其它杆端约束情况下细长压杆的Fd 关
3、系曲线其特点与图b相同。6抽象的细长中心受压直杆 由图b可知,当偶然偏心的偏心距e0时,细长压杆的F-d 关系曲线就逼近折线OAB,而如果把细长压杆抽象为无初弯曲,轴向压力无偏心,材料绝对均匀的理想中心压杆,则它的F-d 关系曲线将是折线OAB。第九章 压杆稳定7 由此引出了关于压杆失稳(buckling)这一抽象的概念:当细长中心压杆上的轴向压力F小于Fcr时,杆的直线状态的平衡是稳定的;当FFcr时杆既可在直线状态下保持平衡(d0),也可以在微弯状态下保持平衡,也就是说FFcr时理想中心压杆的直线平衡状态是不稳定的,压杆在轴向压力Fcr作用下会丧失原有的直线平衡状态,即发生失稳。 Fcr则
4、是压杆直线状态的平衡由稳定变为不稳定的临界力(critical force)。第九章 压杆稳定8 从另一个角度来看,此处中心受压杆的临界力又可理解为:杆能保持微弯状态时的轴向压力。 显然,理想中心压杆是有偶然偏心等因素的实际压杆的一种抽象。第九章 压杆稳定9细长中心受压直杆失稳现象第九章 压杆稳定10压杆的截面形式及支端约束 压杆的临界力既然与弯曲变形有关,因此压杆横截面的弯曲刚度应尽可能大;图a为钢桁架桥上弦杆(压杆)的横截面,图b为厂房建筑中钢柱的横截面。在可能条件下还要尽量改善压杆的杆端约束条件,例如限制甚至阻止杆端转动。第九章 压杆稳定119-2 细长中心受压直杆临界力的欧拉公式 本节
5、以两端球形铰支(简称两端铰支)的细长中心受压杆件(图a)为例,按照对于理想中心压杆来说临界力就是杆能保持微弯状态时的轴向压力这一概念,来导出求临界力的欧拉()公式。第九章 压杆稳定(a)12 在图a所示微弯状态下,两端铰支压杆任意x截面的挠度(侧向位移)为w,该截面上的弯矩为M(x)=Fcrw(图b)。杆的挠曲线近似微分方程为第九章 压杆稳定(b)(a)上式中负号是由于在图示坐标中,对应于正值的挠度w,挠曲线切线斜率的变化率 为负的缘故。13令k2=Fcr /EI,将挠曲线近似微分方程(a)改写成该二阶常系数线性微分方程(b)的通解为(b)(c)第九章 压杆稳定此式中有未知量A和B以及隐含有F
6、cr的k,但现在能够利用的边界条件只有两个,即x=0,w=0 和 x=l,w=0,显然这不可能求出全部三个未知量。这种不确定性是由F = Fcr时杆可在任意微弯状态下(d可为任意微小值)保持平衡这个抽象概念所决定的。事实上,对于所研究的问题来说只要能从(c)式求出与临界力相关的未知常数k就可以了。14 将边界条件x=0,w=0代入式(c)得B=0。于是根据(c)式并利用边界条件x=l,w=0得到第九章 压杆稳定(c)(a)注意到已有B=0,故上式中的A不可能等于零,否则(c)式将成为w 0而压杆不能保持微弯状态,也就是杆并未达到临界状态。由此可知,欲使(c)成立,则必须sinkl=015满足此
7、条件的kl为或即 由于 意味着临界力Fcr 0,也就是杆根本未受轴向压力,所以这不是真实情况。在kl0的解中,最小解 klp 相应于最小的临界力,这是工程上最关心的临界力。第九章 压杆稳定由klp有亦即16从而得到求两端铰支细长中心压杆临界力的欧拉公式: 此时杆的挠曲线方程可如下导出。前已求得B=0,且取klp,以此代入式(c)得第九章 压杆稳定注意到当x= l /2 时 w=d,故有 A=d。从而知,对应于klp,亦即对应于Fcr=p2EI/l 2,挠曲线方程为可见此时的挠曲线为半波正弦曲线。17需要指出的是,尽管上面得到了A=d,但因为杆在任意微弯状态下保持平衡时d为不确定的值,故不能说未
8、知量A已确定。事实上,在推导任何杆端约束情况的细长中心压杆欧拉临界力时,挠曲线近似微分方程的通解中,凡与杆的弯曲程度相关的未知量总是不确定的。第九章 压杆稳定(a)18 思考: 在上述推导中若取kl2p,试问相应的临界力是取klp时的多少倍?该临界力所对应的挠曲线方程和挠曲线形状又是怎样的?第九章 压杆稳定199-3 不同杆端约束下细长压杆临界力的 欧拉公式压杆的长度因数 现在通过二个例题来推导另一些杆端约束条件下求细长中心压杆临界力的欧拉公式。第九章 压杆稳定20 例题9-1 试推导下端固定、上端自由的等直细长中心压杆临界力的欧拉公式,并求压杆相应的挠曲线方程。图中xy平面为杆的弯曲刚度最小
9、的平面,亦即杆最容易发生弯曲的平面。第九章 压杆稳定21 解:根据该压杆失稳后符合杆端约束条件的挠曲线的大致形状可知,任意x横截面上的弯矩为杆的挠曲线近似微分方程则为这里,等号右边取正号是因为对应于正值的(d -w), 亦为正。将上式改写为第九章 压杆稳定22并令 有此微分方程的通解为从而亦有 根据边界条件x=0,w =0得Ak=0;注意到 不会等于零,故知A0,从而有wBcoskx+d。再利用边界条件x=0,w=0得B=-d。于是此压杆的挠曲线方程成为第九章 压杆稳定23至此仍未得到可以确定隐含Fcr的未知量k的条件。为此,利用 x = l 时 w = d 这一关系,从而得出从式(a)可知d
10、不可能等于零,否则w将恒等于零,故上式中只能coskl = 0。满足此条件的kl的最小值为kl = p/2,亦即 从而得到求此压杆临界力的欧拉公式:(b)亦即第九章 压杆稳定24 以 kl = p/2 亦即 k = p/(2l)代入式(a)便得到此压杆对应于式(b)所示临界力的挠曲线方程:第九章 压杆稳定25 例题9-2 试推导下端固定、上端铰支的等直细长中心压杆临界力的欧拉公式,并求该压杆相应的挠曲线方程。图(a)中的xy平面为杆的最小弯曲刚度平面。第九章 压杆稳定(a)26 解:1. 在推导临界力公式时需要注意,在符合杆端约束条件的微弯状态下,支座处除轴向约束力外还有无横向约束力和约束力偶
11、矩。 在推导临界力公式时这是很重要的一步,如果在这一步中发生错误,那么得到的结果将必定是错误的。第九章 压杆稳定(b) 图b示出了该压杆可能的微弯状态,与此相对应,B处应有逆时针转向的约束力偶矩MB,并且根据整个杆的平衡条件MB 0可知,杆的上端必有向右的水平约束力Fy;从而亦知杆的下端有向左的水平约束力Fy 。272. 杆的任意x截面上的弯矩为从而有挠曲线近似微分方程:上式等号右边的负号是因为对应于正值的w, 为负而加的。第九章 压杆稳定(b)28令 k2=Fcr /EI,将上式改写为亦即第九章 压杆稳定此微分方程的通解为从而亦有式中共有四个未知量:A,B,k,Fy。29 对于此杆共有三个边
12、界条件。由边界条件x=0,w =0 得 A=Fy /(kFcr)。又由边界条件x=0,w=0 得 B=-Fy l /Fcr。将以上A和B的表达式代入式(a)有第九章 压杆稳定(a)再利用边界条件x=l,w=0,由上式得30由于杆在微弯状态下保持平衡时,Fy不可能等于零,故由上式得 满足此条件的最小非零解为kl=4.49,亦即 ,从而得到此压杆求临界力的欧拉公式:亦即第九章 压杆稳定31 3. 将 kl = 4.49,亦即 k l 代入式(c)即得此压杆对应于上列临界力的挠曲线方程:利用此方程还可以进一步求得该压杆在上列临界力作用下挠曲线上的拐点在 x l 处(图b)。第九章 压杆稳定(b)32
13、压杆的长度因数和相当长度第九章 压杆稳定33 表9-1中列出了几种典型的理想杆端约束条件下,等截面细长中心受压直杆的欧拉公式。从表中可见,杆端约束越强,压杆的临界力也就越高。表中将求临界力的欧拉公式写成了同一的形式:式中,m 称为压杆的长度因数,它与杆端约束情况有关;m l 称为压杆的相当长度(equivalent length),它表示某种杆端约束情况下几何长度为l的压杆,其临界力相当于长度为m l 的两端铰支压杆的临界力。表9-1的图中从几何意义上标出了各种杆端约束情况下的相当长度m l。第九章 压杆稳定34 运用欧拉公式计算临界力时需要注意:当杆端约束情况在各个纵向平面内相同时(例如球形
14、铰),欧拉公式中的 I 应是杆的横截面的最小形心主惯性矩 Imin。当杆端约束在各个纵向平面内不同时,欧拉公式中所取用的I应与失稳(或可能失稳)时的弯曲平面相对应。例如杆的两端均为如图所示柱形铰的情况下:xyz轴销第九章 压杆稳定35对应于杆在xy平面内失稳,杆端约束接近于两端固定,对应于杆在xz平面内的失稳,杆端约束相当于两端铰支,而取用的临界力值应是上列两种计算值中的较小者。第九章 压杆稳定xyz轴销36 思考: 图a,b所示细长中心压杆均与基础刚性连接,但图a所示杆的基础置于弹性地基上,图b所示杆的基础则置于刚性地基上。试问两压杆的临界力是否均为 ?为什么?并由此判断压杆的长度因数 m
15、是否可能大于2。第九章 压杆稳定379-4 欧拉公式的应用范围临界应力总图. 欧拉公式应用范围 在推导细长中心压杆临界力的欧拉公式时,应用了材料在线弹性范围内工作时的挠曲线近似微分方程,可见欧拉公式只可应用于压杆横截面上的应力不超过材料的比例极限sp的情况。 按照抽象的概念,细长中心压杆在临界力Fcr作用时可在直线状态下维持不稳定的平衡,故其时横截面上的应力可按scrFcr /A来计算,亦即第九章 压杆稳定38式中,scr称为临界应力; 为压杆横截面对于失稳时绕以转动的形心主惯性轴的惯性半径;ml /i为压杆的相当长度与其横截面惯性半径之比,称为压杆的长细比(slenderness)或柔度,记
16、作l,即 根据欧拉公式只可应用于scrsp的条件,由式(a)知该应用条件就是亦即或写作第九章 压杆稳定39可见 就是可以应用欧拉公式的压杆最小柔度。对于Q235钢,按照 E206 GPa,sp 200 MPa,有 通常把llp的压杆,亦即能够应用欧拉公式求临界力Fcr的压杆,称为大柔度压杆或细长压杆,而把llp的压杆,亦即不能应用欧拉公式的压杆,称为小柔度压杆。第九章 压杆稳定40 图中用实线示出了欧拉公式应用范围内(llp)的scr -l曲线,它是一条双曲线,称为欧拉临界力曲线,简称欧拉曲线。需要指出的是,由于实际压杆都有初弯曲,偶然偏心和材质不匀,所以从实验数据来分析,可以应用欧拉公式求临
17、界力的最小柔度比这里算得的lp要大一些。第九章 压杆稳定41*. 研究小柔度压杆临界力的折减弹性模量理论 工程中的绝大部分压杆为小柔度压杆,不能应用欧拉公式。研究小柔度压杆(llp)临界应力的理论很多,此处介绍的折减弹性模量理论是其中之一。 现先以矩形截面小柔度钢压杆在xy平面内失稳为例来探讨。第九章 压杆稳定42第九章 压杆稳定(a) 图a所示为钢在压缩时的se 曲线。 当加载过程中应力s 超过比例极限时,材料在某一应力水平下的弹性模量可应用切线模量Es; 而卸载时,材料的弹性模量由卸载规律可知,它与初始加载时的弹性模量E 相同。43(1) 横截面上应力的变化情况 按抽象的概念,小柔度中心压
18、杆与大柔度中心压杆一样,当F=Fcr时杆既可在直线状态下保持平衡,也可在微弯状态下保持平衡。小柔度压杆在直线状态下保持平衡时其横截面上的应力是均匀的,其值为scr = Fcr/A(图b)。第九章 压杆稳定(b)44 当压杆在此应力水平下发生微弯时,中性轴一侧(图b中 z 轴右侧)横截面上产生附加拉应力,使原有的压应力scr减小,故属于减载,附加弯曲拉应力为st=Ey/r (x);第九章 压杆稳定(b)中性轴另一侧横截面上产生附加应力,使原有的压应力scr 增大,故属于加载,附加弯曲压应力为sc=Es y/r (x)。因为EEs,故微弯时中性轴不通过横截面形心,它离左边缘的距离为h1,离右边缘的
19、距离为h2。45(2) 中性轴的具体位置 根据压杆由于微弯产生的正应力在横截面上不应组成合力有即应有亦即要求第九章 压杆稳定(b)46这就要求注意到h1+h2=h,由上式可解得第九章 压杆稳定(b)47(3) 横截面上弯矩M(x)与曲率r(x)的关系根据 有第九章 压杆稳定(b)上式中,Iz,1=bh13/3和Iz,2=bh23/3都是z轴一侧的矩形对z轴的惯性矩。48由上式可得为了表达方便,用I 来表示bh3/12,于是有为将上式表达为一般弯曲问题中 的形式,引入折减弹性模量Er:第九章 压杆稳定(b)49于是有亦即或者说,挠曲线的近似微分方程为 对于非矩形截面的小柔度压杆,其折减弹性模量可
20、类似于上面所述的方法求得,而挠曲线方程的形式仍如式(c)所示。第九章 压杆稳定(c)50(4) 小柔度压杆的临界力和临界应力表达式 小柔度压杆的挠曲线近似微分方程(c)与大柔度压杆的 wM(x)/EI 完全一致,可见对不同杆端约束下各种截面形状的小柔度压杆都有如下公式:临界力临界应力第九章 压杆稳定51. 压杆的临界应力总图 临界应力总图是指同一材料制作的压杆,其临界应力scr随柔度l 变化的关系曲线。第九章 压杆稳定 在llp的部分,有欧拉公式scr p2E/l2表达scrl关系;但在压杆柔度l很小时,由于该理论存在的不足,计算所得scr可能会大于材料的屈服极限ss,故取scr ss。 在l
21、lp的范围内可利用折减弹性模量理论公式scr p2Er /l2表达scrl关系;52此外,该理论公式中有与截面形状相关的折减弹性模量Er,故l91,故按下式计算稳定因数:从而有许可压力:68 例题9-5 厂房的钢柱由两根槽钢组成,并由缀板和缀条联结成整体,承受轴向压力F=270 kN。根据杆端约束情况,该钢柱的长度因数取为m。钢柱长7 m,材料为Q235钢,强度许用应力s=170 MPa。该柱属于b类截面中心压杆。由于杆端连接的需要,其同一横截面上有4个直径为d0=30 mm的钉孔。试为该钢柱选择槽钢号码。第九章 压杆稳定69解:1. 按稳定条件选择槽钢号码 为保证此槽钢组合截面压杆在xz平面
22、内和xy平面内具有同样的稳定性,应根据ly=lz确定两槽钢的合理间距h。现先按压杆在xy平面内的稳定条件通过试算选择槽钢号码。假设j,得到压杆的稳定许用应力为因而按稳定条件算得每根槽钢所需横截面面积为第九章 压杆稳定70由型钢表查得,14a号槽钢的横截面面积为 A =18.51 cm210-4 m2,而它对z轴的惯性半径为iz=5.52 cm=55.2 mm。 下面来检查采用两根14a号槽钢的组合截面柱其稳定因数j 是否不小于假设的j 。第九章 压杆稳定 注意到此组合截面对于z 轴的惯性矩 Iz 和面积 A 都是单根槽钢的两倍,故组合截面的iz 值就等于单根槽钢的iz 值。于是有该组合截面压杆的柔度:71由表9-3查得,Q235钢b类截面中心压杆相应的稳定因数为j。显然,前面假设的j这个值过大,需重新假设j 值再来试算;重新假设的j 值大致上取以前面假设的j和所得的j的平均值为基础稍偏于所得j 的值。重新假设j,于是有第九章 压杆稳定72试选16号槽钢,其 A10-4 m2,iz=61 mm,从而有组合截面压杆的柔度:第九章 压杆稳定由表9-3得j =,它略小于假设的j。现按采用2根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人车位转让协议合同范本
- 2024年度园林绿化工程设计合同范例
- 2024厂房交易居间合同
- 2024厂房物业管理合同范文
- 20243年跨境化工原料采购协议协议一
- 2024年度企业人员派遣服务协议范本版B版
- 2024专项建筑工程协议附加条款一
- 2024专业变压器安装工程承包协议2
- 2024年度企业经营咨询服务合同
- 2024年度单位团购公寓协议样本
- 理论联系实际请阐述你对坚定中国特色社会主义文化自信的理解参考答案三
- 养老护理员职业技能培训实施方案
- 2024消防知识培训
- 长春大学《液压与气压传动》2023-2024学年第一学期期末试卷
- 医疗器械安装调试培训及验收方案
- 乡村医生培训课件内容
- 小学数学教师资格考试面试试题及解答参考
- 国家开放大学电大《动物繁殖基础》期末题库及答案
- ABC分类法例题98063教学资料
- 医疗预防保健机构的拟聘用证明
- 持续完善激励约束机制激发企业发展活力
评论
0/150
提交评论