




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数是奇函数,则的值为( )A10B9C7D12设全集,集合,.则集合等于( )ABCD3已知复数(为虚数单位),则下列说法正确的是( )A的虚部为B复数在复平面内对应
2、的点位于第三象限C的共轭复数D4执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD5圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD6已知函数,若,则的取值范围是( )ABCD7设全集,集合,则( )ABCD8在中,为上异于,的任一点,为的中点,若,则等于( )ABCD9若数列为等差数列,且满足,为数列的前项和,则( )ABCD10在中,则在方向上的投影是( )A4B3C-4D-311已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数B,a为任意非零实数Ca、b均为任意实数D不存在满
3、足条件的实数a,b12某三棱锥的三视图如图所示,则该三棱锥的体积为( )AB4CD5二、填空题:本题共4小题,每小题5分,共20分。13根据如图所示的伪代码,若输出的的值为,则输入的的值为_.14若函数,则_;_.15在矩形中,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_.16已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵,求矩阵的特征值及其相应的特征向量18(12分)在四棱锥中,底面
4、为直角梯形,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.19(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及20(12分)已知函数(1)当时,求曲线在点的切线方程;(2)
5、讨论函数的单调性21(12分)已知函数(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,满足,证明:22(10分)已知是等腰直角三角形,分别为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与平面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析
6、问题、解决问题的能力.2A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.3D【解析】利用的周期性先将复数化简为即可得到答案.【详解】因为,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.4B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,
7、不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.5B【解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何
8、体的体积可用割补法来求其体积,本题属于基础题.6B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.7D【解析】求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于 故集合或 故集合 故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.8A【解析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.9B【解析】利用等差数列
9、性质,若,则 求出,再利用等差数列前项和公式得【详解】解:因为 ,由等差数列性质,若,则得,为数列的前项和,则故选:【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.10D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,又,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.11A【解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有
10、,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题12B【解析】还原几何体的直观图,可将此三棱锥放入长方体中, 利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.【点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解【详解】解:由程序语句知:算法的功能是求的值,当时,可得:,或(舍去);当时,可得:(舍去)综上
11、的值为:故答案为:【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题140 1 【解析】根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.15.【解析】计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,所以可得面,设外接圆的半径为,由正弦定理可得,即,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属
12、于中档题.16【解析】设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到 ,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得 ,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即 ,因为,所以 ,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17矩阵属于特征值的一个特征向量为,矩阵属于特征值的一个特征向量为【解析】先由矩阵特征值的定义列出特征多项式,令解方程可得特征值,再由特征值列出方程组,
13、即可求得相应的特征向量.【详解】由题意,矩阵的特征多项式为,令,解得, 将代入二元一次方程组,解得,所以矩阵属于特征值的一个特征向量为;同理,矩阵属于特征值的一个特征向量为v【点睛】本题主要考查了矩阵的特征值与特征向量的计算,其中解答中熟记矩阵的特征值和特征向量的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.18(1)存在;详见解析(2)【解析】(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角【详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下
14、,取中点,连结.即易得所以面面,即面(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为【点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的求空间角一般是建立空间直角坐标系,用空间向量法求空间角19 (). ()见解析.【解析】()人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;()根据题意,随机变量,列出分布列,根据公式求出期望即可【详解】()设事件
15、抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福()根据题意,随机变量,的可能的取值为;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型20(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解析】(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是.当
16、时,所以当时,;当时,所以在上单调递增,在上单调递减;当时,所以当和时,;当时,所以在和上单调递增,在上单调递减;当时,所以在上恒成立.所以在上单调递增;当时,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.21(1)(2)见解析【解析】(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,在上单调递减,在上单调递增故有解,即的取值范围为(2),当且仅当时等号成立,即当且仅当,时等号成立,即成立【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.22 ()见解析. () .【解析】(I)证明平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育学综合知识
- 广东省东莞市南城区2024-2025学年七年级下学期3月月考语文试题(原卷版+解析版)
- 员工教师职业道德培训
- 四川省攀枝花市七中2025届高三第四次模拟考试化学试卷含解析
- 业主拍照物业合同标准文本
- 保证货款合同标准文本
- 关于轮胎购销合同样本
- pvc地胶合同样本
- 关于建厂房合同样本
- 公寓商圈出租合同样本
- 医疗行业商密解读分析报告
- 高边坡脚手架施工方案设计
- 土木工程师(水利水电)资格《专业知识》考试题库-水土保持(重点题)
- 危险化学品安全周知卡(钠石灰、硫酸氢钠、硝酸锌、氯化铜、氯化锌)
- GB/T 10611-2003工业用网标记方法与网孔尺寸系列
- 精华版-赵武灵王胡服骑射课件
- 电镀及化学镀课件
- CPK培训教材课件
- 项目模板拆除申请表
- 雅佳AKAI-EWI5000-中文音色表
- 免疫预防与疫苗课件
评论
0/150
提交评论