![2022年河北省固安高三第一次模拟考试数学试卷含解析_第1页](http://file4.renrendoc.com/view/f01c75a43d197aeb49fb893400667913/f01c75a43d197aeb49fb8934006679131.gif)
![2022年河北省固安高三第一次模拟考试数学试卷含解析_第2页](http://file4.renrendoc.com/view/f01c75a43d197aeb49fb893400667913/f01c75a43d197aeb49fb8934006679132.gif)
![2022年河北省固安高三第一次模拟考试数学试卷含解析_第3页](http://file4.renrendoc.com/view/f01c75a43d197aeb49fb893400667913/f01c75a43d197aeb49fb8934006679133.gif)
![2022年河北省固安高三第一次模拟考试数学试卷含解析_第4页](http://file4.renrendoc.com/view/f01c75a43d197aeb49fb893400667913/f01c75a43d197aeb49fb8934006679134.gif)
![2022年河北省固安高三第一次模拟考试数学试卷含解析_第5页](http://file4.renrendoc.com/view/f01c75a43d197aeb49fb893400667913/f01c75a43d197aeb49fb8934006679135.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等比数列的各项均为正数,设其前n项和,若(),则( )A30BCD622在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D93已知函数,若对任意的,存在实数满足,使得,则的最大值是( )A3B2C4D54五行学说是华
2、夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD51777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD6设,则( )ABC
3、D7己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D68已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD9已知平面向量,满足,且,则与的夹角为( )ABCD10已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD11已知函数满足,当时,则( )A或B或C或D或12若复数(为虚数单位),则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当
4、甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为_.(用数字作答)14已知向量,且,则_15已知两圆相交于两点,,若两圆圆心都在直线上,则的值是_ .16数列满足递推公式,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)解;(2)若,证明:.18(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.19(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是1;(2)若,成等比数列,求直线的方程.20(12分)已知函数.(1)若函数在上单
5、调递减,求实数的取值范围;(2)若,求的最大值.21(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.22(10分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因
6、此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.2A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.3A【解析】根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围
7、,进一步得到的最大值.【详解】,对任意的,存在实数满足,使得, 易得,即恒成立,对于恒成立,设,则,令,在恒成立,故存在,使得,即,当时,单调递减;当时,单调递增.,将代入得:,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.4A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素
8、相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.5D【解析】根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.6A【解析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三
9、者的大小关系.【详解】,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.7D【解析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求出,再结合为线段的中点,即可求出到的距离【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题8B【解析】选B.考点:圆心坐标9C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详
10、解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.10C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.11C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得
11、结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.12B【解析】根据复数的除法法则计算,由共轭复数的概念写出.【详解】,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。135040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是
12、两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。14【解析】根据垂直向量的坐标表示可得出关于实数的等式,即可求得实数的值.【详解】,且,则,解得.故答案为:.【点睛】本题考查利用向量垂直求参数,涉及垂直向量的坐标表示,考查计算能力,属于基础题.15【解析】根据题意,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上,列出方程解得即可得到结论.【详解】由,,设的中点为,根据题意,可得,且,解得,,,故.故答案为:.【点睛】本题考查相交弦的性质,解题的关键在于利用相交弦的性质,即两圆的连心线垂直平分相交弦,属于基础题.162020【解析】
13、可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,将以上式子累加得.由得.令,有.故答案为:2020【点睛】本题考查数列递推式和累加法的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析.【解析】(1)在不等式两边平方化简转化为二次不等式,解此二次不等式即可得出结果;(2)利用绝对值三角不等式可证得成立.【详解】(1),由得,不等式两边平方得,即,解得或.因此,不等式的解集为;(2),由绝对值三角不等式可得.因此,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用绝对值三角不等式证明不等式,考
14、查推理能力与运算求解能力,属于中等题.18(1)证明见详解;(2)【解析】(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.【详解】解:(1)由题知,函数在,处取得极值1,且,令,则为增函数,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,则令,则,,在上单调递增,且,有唯一零点,且,
15、当时,单调递减;当时,单调递增.,由整理得,令,则方程等价于而在上恒大于零,在上单调递增,.,实数的取值范围为.【点睛】本题考查了函数的极值,利用导函数判断函数的单调性,函数的零点存在定理,证明不等式,解决不等式恒成立问题.其中多次构造函数,是解题的关键,属于综合性很强的难题.19(1)见解析;(2)【解析】(1)设,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【详解】(1)在抛物线上,设,由题可知,(2)由(1)问可设:,则, , ,即(*),将直线与抛物线联立,可得:,所以,代入(*)式,可得满足,:.【点睛】本题考查直线与抛物线的位置关系的应用,在处理直线
16、与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.20(1)(2)【解析】(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;(2)通过对的导函数分析,确定有唯一零点,则就是的极大值点也是最大值点,计算的值并利用进行化简,从而确定.【详解】(1)由题意知, 在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,所以存在满足,即.当时,;当时,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【点睛】(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.21(1)(2)详见解析【解析】(1),在上,因为是减函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灭火器的紧急逃生用法
- 概率统计算法复习题
- 屋面工程施工合同细节
- 违反工作纪律整改报告
- 2025年浙教新版九年级物理下册阶段测试试卷含答案
- 机器抵押合同(2篇)
- 更换厨房用品合同(2篇)
- 服务记录协议书(2篇)
- 2025年苏教新版八年级历史下册月考试卷
- 2025年粤教沪科版选修历史上册阶段测试试卷
- 高一数学寒假讲义(新人教A专用)【复习】第05讲 三角函数(学生卷)
- 农村高中思想政治课时政教育研究的中期报告
- 环卫清扫保洁、垃圾清运及绿化服务投标方案(技术标 )
- 医院定岗定编方案文档
- 4-熔化焊与热切割作业基础知识(一)
- 2023年200MW储能电站储能系统设计方案
- 个人安全与社会责任的基本知识概述
- 建筑装饰工程计量与计价试题一及答案
- 简易劳务合同电子版
- 明代文学绪论
- 体育赛事的策划、组织与实施 体育赛事利益相关者
评论
0/150
提交评论