版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等比数列的前项和为,则“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要2已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角
2、形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为3已知函数满足=1,则等于( )A-BC-D4a为正实数,i为虚数单位,则a=( )A2BCD15国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%6已知数列满足,且,则的值是( )ABC4D7新闻出版业不断推进供给侧结构性改
3、革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D2016年我国数字出版营收占新闻出版营收的比例未超过三分之一8已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,则的方程为( )ABCD9某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名
4、同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D1210函数的最大值为,最小正周期为,则有序数对为( )ABCD11在中,是的中点,点在上且满足,则等于( )ABCD12为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为( )A正
5、相关,相关系数的值为B负相关,相关系数的值为C负相关,相关系数的值为D正相关,相关负数的值为二、填空题:本题共4小题,每小题5分,共20分。13如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_14函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.15设双曲线的左焦点为,过点且倾斜角为45的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为_16的展开式中项的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其
6、中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82818(12分)已知数列和,前
7、项和为,且,是各项均为正数的等比数列,且,(1)求数列和的通项公式;(2)求数列的前项和19(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.20(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.21(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,(1)求数列的通项公式;(2)已知数列满足,设数列的前项和为,求大于的最小的正整数的值22(10分)棉花的纤维长度是评价棉花质量的重要指
8、标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述4
9、1根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.2C【解析】根据
10、三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.3C【解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因为,整理得,因为,则所以.故选:C.【点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是
11、一道难度较大的题目.4B【解析】,选B.5D【解析】根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.6B【解析】 由,可得,所以数列是公比为的等比数列, 所以,则, 则,故选B.点睛:本题考查了等
12、比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.7C【解析】通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.8D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,所以椭圆的方程为.
13、故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.9D【解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.10B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B11B【解析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解【详解】解:M是BC的中点,知AM是BC边上的中线,又由点P在AM上
14、且满足P是三角形ABC的重心 又AM1故选B【点睛】判断P点是否是三角形的重心有如下几种办法:定义:三条中线的交点性质:或取得最小值坐标法:P点坐标是三个顶点坐标的平均数12C【解析】根据正负相关的概念判断【详解】由散点图知随着的增大而减小,因此是负相关相关系数为负故选:C【点睛】本题考查变量的相关关系,考查正相关和负相关的区别掌握正负相关的定义是解题基础二、填空题:本题共4小题,每小题5分,共20分。131【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用14 【解析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:
15、;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.15【解析】设直线的方程为,与联立得到A点坐标,由得,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,由得,从而,即,从而离心率故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.1640【解析】根据二项定理展开式,求得r的值,进而求得系数【详解】根据二项定理展开式的通项式得 所以 ,解得 所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)填表见解析;有的把握认为,平均车
16、速超过与性别有关(2)详见解析【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【详解】(1)平均车速超过的人数平均车速不超过的人数合计男性驾驶员301040女性驾驶员51520合计352560因为,所以有的把握认为,平均车速超过与性别有关.(2)服从,即,.所以的分布列如下0123的期望【点睛】本小题主要考查列联表独立性检验,考查二项分布分布列和数学期望,属于中档题.18(1),;(2).【解析】(1)令求出的值,然后由,得出,然后检验是否符合在时的表达式,即可得出数列的通项公式,并设数列的公
17、比为,根据题意列出和的方程组,解出这两个量,然后利用等比数列的通项公式可求出;(2)求出数列的前项和,然后利用分组求和法可求出.【详解】(1)当时,当时,.也适合上式,所以,.设数列的公比为,则,由,两式相除得,解得,;(2)设数列的前项和为,则,.【点睛】本题考查利用求,同时也考查了等比数列通项的计算,以及分组求和法的应用,考查计算能力,属于中等题.19(1)(2)是定值,且定值为2【解析】(1)设出点坐标并代入椭圆方程,根据列方程,求得的值,结合求得的值,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆方程,求得点的横坐标,联立直线的方程和椭圆方程,求得,由此化简求得为定值.
18、【详解】(1)已知点在椭圆:()上,可设,即,又,且,可得椭圆的方程为.(2)设直线的方程为:,则直线的方程为.联立直线与椭圆的方程可得:,由,可得,联立直线与椭圆的方程可得:,即,即.即为定值,且定值为2.【点睛】本小题主要考查本小题主要考查椭圆方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.20(1);(2).【解析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得: ,又 ,即由得:(2)由余弦定理得:又(当且仅当时取等号) 即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.21(1)(2)4【解析】(1)利用判断是等差数列,利用求出,利用等比中项建立方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度煤矸石砖损失赔偿合同
- 二零二四年成华区无责任底薪招房产销售合同
- 2024年度大学实验室设备采购合同3篇
- 2024年度甲方与乙方合作开展文化活动合同
- 二零二四年度云计算数据中心运维服务合同3篇
- 2024年度货物买卖及安装合同3篇
- 绿化工程2024年度审计合同
- 贵州劳动合同书
- 二零二四年度设计合同:城市综合体设计方案与施工图纸协议(04版)2篇
- 2024版建筑工程铲车租赁合同
- 子宫腺肌病病例分析报告
- 犯罪心理学-第五章不同犯罪类型的心理学分析课件
- (完整版)量子信息与量子计算课件
- 高考英语高频短语按字母排序
- 《我的祖国》课件
- 老年人心脏病的护理与康复
- 农民工工资监理细则
- 高热惊厥急救及护理课件
- 部编版一年级上册道德与法治《吃饭有讲究》电子课件
- 2024年员工考勤表(通用版)
- 小学一年级上学期思维训练数学试题(答案)
评论
0/150
提交评论