(完整版)量子信息与量子计算课件_第1页
(完整版)量子信息与量子计算课件_第2页
(完整版)量子信息与量子计算课件_第3页
(完整版)量子信息与量子计算课件_第4页
(完整版)量子信息与量子计算课件_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

量子信息与量子计算绪论通信系统的理论模型信息学理论——研究信息的产生、存储、加工、传播等行为的科学理论信源—产生消息和消息序列的源编码器—把信息转化为信号的设备(1)信源编码器:提高信息传输的效率(2)信道编码器:提高信息传输的可靠性3.信道—通信系统把载荷消息的信号从甲地传输到乙地的媒介译码器—对信道输出的编码信号进行逆变换的设备信宿—消息传送的对象?信息是什么?衡量通信的有效程度和可靠程度的标准是什么?怎样判断通信方法的优和劣?信息的定义与度量问题

1928年哈特来(R.V.L.Hartley)首先提出了“信息”这一概念。

1948年控制论创始人维纳(N.Wiener)指出“信息是信息,不是物质,也不是能量”。

1948年香农(C.E.Shannon)对信息及其行为进行了定性和定量的描述。

香农给出了两个著名的基本定理:(1)信源编码定理也称无噪编码定理或香农第一编码定理,定量的给出了用于存储从信源发出信息所需要的物理资源;(2)信道编码定理也称含噪编码定理或香农第二编码定理,定量的给出了有噪声的信道能可靠传输信息的量。相对于20世纪末期新生的现代量子信息理论,我们称香农理论为经典理论!

量子信息学——

一门新兴的、以量子力学与经典信息学理论为主干的交叉性学科。信息学量子力学量子信息学量子通信量子计算量子隐形传态量子密钥分发量子计算机量子算法第一章量子信息与量子计算的基本概念§1.1

量子信息§

1.2经典解读§

1.3量子逻辑门(量子逻辑电路)简介§

1.4图灵机、经典计算机与量子计算机§

1.5有关量子信息编码的基本概念现代物理将微观世界中所有的微观粒子(光子、电子、原子等)统称为量子。量子假说:对于一定频率的电磁辐射,物体只能以此最小单位吸收或发射它,换言之,吸收和发射电磁辐射只能以“量子”方式进行,每个“量子”

的能量可以表示为:1.量子§1.1量子信息一、量子力学基础式中为普朗克常数。(1.1-1)2.态矢量描述微观粒子在三维空间运动的波函数ψ可以用坐标矢量r=(x,y,z)和时间t的复函数ψ(r,t)来表示。粒子的波函数也叫做几率幅,其模的平方表示在时刻t粒子出现在位置r上的几率密度。微观粒子的波函数也可用Dirac符号表示,即复矢量空间的右矢也可用于表示波函数。叫做态矢量,它可以用n维复矢量空间的列矢量表示:为坐标矢量r,时间t和自旋S的函数(1.1-2)(1.1-3)利用Dirac符号,两个量子态和的叠加态可以表示为:右矢量的复共轭矢量叫做左矢量,n维左矢量可以表示为:波函数满足归一化条件:n维矢量空间中单位矩阵可以用任意的、构成完备系的基矢表示:(1.1-4)(1.1-5)(1.1-6)(1.1-7)从而,态矢量可以表示成基矢的线性组合其中,基矢满足正交、归一条件各种可观测量叫做作用于波函数上的算符。任何一个物理量算符A的期待值或平均值为:物理量A的测量值必须为实数(1.1-8)(1.1-9)(1.1-10)3.自旋1/2体系的量子态自旋的粒子在z轴方向的投影只有自旋向上和向下两种可能,因此可自旋的粒子的状态可用二分量矢量来表示。朝z轴正向的自旋(自旋向上)态和朝z轴负向的自旋(自旋向下)态可用列矢量表示:(1.1-11)自旋的粒子的自旋角动量算符可以表示为:(1.1-12)因为态矢量和均为二分量,自旋角动量算符应为2×2矩阵。式(1.1-12)中2×2矩阵的x,y,z的分量分别为:(1.1-13)Pauli

自旋矩阵【例1.1-1】试用自旋算符,的本征态和表示的本征态。解设的本征值为和的本征态分别记作和,的本征值为和的本征态分别记作和。将用的本征态和展开,则(1.1-14)由的归一化条件可得(1.1-15)由Pauli

矩阵的本征值方程(1.1-16)即(1.1-17)得到(1.1-18)再利用式(1.1-15)得到,因此最后得到的自旋向上的本征态:(1.1-19)对于,利用(1.1-20)或者(1.1-21)得到(1.1-22)从而有(1.1-23)由式(1.1-19)和式(1.1-23)很容易验证两个本征矢的正交性(1.1-24)作业:试用自旋算符,的本征态

表示

的本征态。二、量子信息利用微观粒子状态表示的信息称为量子信息量子信息的载体可以是任意两态的微观粒子系统。

图1.1-1具有两个电子层面的原子可以表示量子信息Quantumrepresentedbytwoelectroniclevelsinanatom微观粒子系统举例:◆光子具有两个不同的线偏振态或椭圆偏振态;◆恒定磁场中原子核的自旋;◆具有二能级的原子、分子或离子;◆围绕单一原子自旋的电子的两个状态(如图1.1-1)等。三、量子信息的基本存储单元及其特性经典信息的基本存储单元——比特(bit),可以由经典状态1和0(如电压的高低)表示。量子信息的基本存储单元——量子比特(qubit),一个量子比特的状态是一个二维复数空间的向量,它的两个极化状态和对应于经典状态的0和1。(1.1-25)(1.1-26)n个量子比特的状态:(1.1-27)一个量子比特能够处于既不是又不是的状态上,而是处于和的一个线性组合的所谓中间状态之上,即处于和的叠加态上。利用量子的某一状态表示信息时,我们就说信息量子化了并称为量子信息由于信息载体(量子)的微观特性,量子信息就变的多姿多彩。这些微观特性主要表现在:①量子态相干性:微观系统中量子间相互干涉的现象成为量子信息诸多不可思议特性的重要物理基础;②量子态纠缠性:N(大于1)个量子在特定的(温度、磁场)环境下可以处于较稳定的量子纠缠状态,对其中某个子系统的局域操作会影响到其余子系统的状态;③量子态叠加性:量子状态可以叠加,因此量子信息也是可以叠加的,所以可以同时输入和操作N个量子比特的叠加态;④量子不可克隆定律:量子力学的线性特性确保对任意量子态无法实现精确的复制,量子不可克隆定律和测不准原理构成量子密码术的物理基础。

用量子比特存储量子态表示信息是量子信息的出发点。量子力学理论描述量子信息演绎的行为。薛定谔方程制约着量子态信息的每一步演变,线性代数的幺正变换约束着可逆的量子态信息计算;量子信息的传输是由量子通道端点上量子纠缠集合状态的变化(微观客体的关联具有非局域的性质,且可以延伸到很远的距离),结果信息的获取便是在得到输出态之后,量子计算机对输出态进行一定的测量后给出的结果。用量子比特存储量子态表示信息是量子信息的出发点。用量子比特存储量子态表示信息是量子信息的出发点。四、线性代数中的量子符号及其运算的简介量子力学理论是线性的。我们已知在量子力学态矢空间中使用标准符号描述向量,且用0表示该向量空间的零向量,因此对于任意的,下列等式成立:(1.1-28)一个向量空间的生成集合是一个向量集合{},该向量空间中的任意向量都能够写成这个生成集合的线性组合。例向量空间的生成集合是(1.1-29)中的任意向量(1.1-30)能够写成和的线性组合。我们说和生成向量空间。张量乘积是线性代数的基本运算(1.1-31)表1.1-1给出了线性代数中表述量子力学中量的标准符号及其简要说明。表1.1-1线性代数中一些量子力学标准符号及其简要说明四、量子态叠加与量子态纠缠(纠缠态)

量子态的叠加性源于微观粒子“波粒二象性”的波动“相干叠加性”(一个以上的信息状态累加在同一个微观粒子上的现象)。

量子纠缠状态(entangledstate)指的是两个或多个量子系统之间的非定域、非经典的关联,是量子系统内各子系统或各自由度之间关联的力学属性(一个以上的微观粒子因微观系统的特性相互交缠在一起的现象)。量子态可以叠加的物理特性是实现量子并行计算的基础。量子态能够纠缠是实现信息高速的不可破译通信的理论基础,它们都是量子信息理论中特有的概念。(A).量子态的矩阵表示

例:一对量子比特(1.1-32)能够组成四个不重复的量子比特对,,,

,求出它们张量积的矩阵表示。(1.1-33)很显然集合

是四维向量空间的生成集合。(B).量子态叠加与量子态纠缠当量子比特列的叠加状态无法用各量子比特的张量乘积表示的话,这种叠加状态就称为量子纠缠状态。例:有一量子叠加状态(1.1-34)由于其最后一位量子比特位都是

,因此能够将它写成量子比特与量子比特的乘积:(1.1-35)但是,对于下列的量子叠加状态:(1.1-36)无论采用怎样的方法都无法写成两个量子比特的乘积。这个叠加状态就称为量子纠缠状态。返回量子状态叠加与并行处理的关系用两个简单的例子介绍:例:十进制数10和5,若用量子比特来表示,则可分别写成(1.1-37)取它们的叠加态(1.1-38)(1.1-39)例:同时计算一个函数f(x)在一系列位置上的取值,我们也可以取更复杂的纠缠态。如设置x和y=f(x)为两个存储器,他们的量子态分别为和,则下列纠缠态就包含了该函数整体上的信息:对它实施各种运算,就如同并行计算一个函数f(x)在

一系列位置上的函数值。具体的考虑单量子比特体系(1.1-40)将运算f(x)作用到具有两个寄存器的状态,其中,第一个寄存器叫做数据寄存器,第二个寄存器叫做目标寄存器。设算符作用于状态,给出(1.1-41)运算过程如下:如图1.1-2所示,首先将Hadamard们作用到数据存储器的状态上,接着再作用,则可以得到(1.1-42)由此可见量子叠加状态是实现真正物理意义上并行计算的物质基础

图1.1-2量子并行计算由于并行计算,和的结果同时以线性组合的形式包括在式(1.1-42)的状态中§1.2经典解读一、薛定谔猫和EPR佯谬1.薛定谔猫薛定谔猫的实验装置巧妙地将微观放射源和宏观的猫联系起来2.EPR佯谬VS量子力学是否自洽是否完备“EPR佯谬”思想实验爱因斯坦(A.Einstein)波多尔斯基(B.Podolsky)罗森(N.Rosen)玻尔ERP对(A,B)总自旋为0的粒子对粒子A粒子B这场争论的本质——

真实世界是遵从爱因斯坦的居于实在论,还是玻尔的非局域理论?判定这场战争的依据——

基于爱因斯坦的隐参数理论推到得到的贝尔不等式§1.4图灵机、经典计算机与量子计算机一、图灵机与经典计算机经典计算机实际上就是一个通用图灵机(Turing-machine,简称TM)图灵机的基本模型记忆单元:可以想象成一条磁带(Tape)处理单元:可以想象成一个读写头(Head)控制单元TM运算过程

TM正式定义:M=(Q,

,

)有限状态集转移函数有限带符号集磁带上空白用#或B表示转移函数

:Q

Q

{L,R,N}图灵机工作原理举例【例1.4-1】设磁带方格上的字符是0和1。试设计能够反转输入到磁带各方个字符的机器。解可以设计如下⑴控制单元的状态设为0;⑵设磁带方格的字符为0或1或B三种;⑶控制规则见表1.4-1表1.4-1⑷假定最初读写头在左端

输入:输出:【例1.4-2】试设计能够将磁带上整个字符往右平移一个方格的图灵机。最左端方格上的字符设为0。解控制状态也可以取和。⑴控制单元的状态:;⑵设磁带方格的字符为0或1或B三种;⑶控制规则见表1.4-2表1.4-2

⑷假定最初读写头在磁带左端,状态为

在这一图灵机中,控制单元起寄存器的作用控制规则的另一种表示方法:【例1.4-3】试设计能够将磁带上整个字符往左平移一个方格的图灵机。最右端方格上的字符设为0,最初读写头在磁带左端解控制状态也可以取和。控制规则见表1.4-3表1.4-3【例1.4-4】试设计能够复制磁带上字符#ab#,使其输出为#ab##ab#

。最左端方格上的字符设为#。解TM的运算过程如下二、量子计算机1.量子计算机概念的出现◆量子信息理论的研究起始于二十世纪七十年代的光量子通信研究。◆二十世纪八十年代初,计算机科学的研究领域里就出现了量子计算机的概念。◆在进入九十年代之后由E.Bernstein

和U.Vazirani俩位对量子计算机在数学上给予严格的形式化描述2.量子计算机与可逆计算量子计算机——

一类遵循量子力学规律存储量子信息、实现量子计算的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。经典计算机特点量子计算机特点(A)量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;(B)量子计算机中的变换为所有可能的幺正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。

(A)经典计算机输入态和输出态都是经典信号;(B)经典计算机内部的每一步变换都将正交态演化为正交态。

通用图灵机是不可逆的。但Bennett

证明了,所有经典不可逆的计算机都可以改造为逆计算机,而不影响其计算能力。量子计算机的概念源于对可逆计算机的研究!!!图1.4-1不可逆异或门改进为可逆异或门§1.5有关量子信息编码的基本概念一、量子信息编码量子编码的目的就是为了纠正和防止消相干引起的量子错误量子信息编码的困难:

(A)量子态不可克隆定理禁止态的复制;

(B)在量子情况下,测量会引起态坍缩,从而破坏量子相干性;

(C)而量子错误的自由度要大得多.对于一种确定的输入态,其输出态可以是二维空间中的任意态。解决方案:

(A)量子编码时,单比特态不是被复制为多比特的直积态,而是编码为一较复杂的纠缠态.

(B)量子纠错在确定错误图样时,只进行部分测量.

(C)量子错误的种类虽然为连续统,但它可以表示为3种基本量子错误(对应于3个Pauli矩阵)的线性组合.只要纠正了这3种基本量子错,所有的量子错误都将得到纠正.

二、量子编码定理量子信源编码定律量子信道编码定律Schumacher的定理表明,如果所有均限制为纯态,以2为底冯·诺伊曼熵

确定了所需的最小量子比特数。Schumacher的定理后来经Holevo推广到为混合态的情况,此时相对冯·诺伊曼熵确定了所需的最小量子比特数。量子信道的经典信息容量已完全确定,它可以用前面引入的相对冯·诺伊曼熵表示出来。量子信道的量子信息容量尚未完全解决,但也已经取得重要突破。三、量子编码方案(A)

纠随机错的量子码(B)

纠随机错的量子码通常所谓的量子纠错码即指纠随机错的量子码量子比特有可能发生合作消相干,结果导致各个比特出错的概率相互关联,此即合作量子错第二章经典比特与量子比特§2.1

经典比特、量子比特及其叠加状态§

2.2量子比特的测定§

2.3量子比特对与量子比特列阵§

2.4量子比特的基本操作§2.1经典比特、量子比特及其叠加状态

记述经典信息的二进制存储单元称为经典比特(bit),经典比特由经典状态的1和0表示

记述量子信息的基本存储单元称为量子比特(qubit)

,一个量子比特的状态是一个二维复数空间的向量,它的两个极化状态和对应于经典状态的0和1。

qubit可以去无限多个值

bit只能取0和1值复数向量和的长度均为1,且和的内积为0。(2.1-1)(2.1-2)或无论选择哪一组量子比特对,都是直交的基底返回量子比特除了可以处于和以外,还可以处于两个状态的叠加态——量子比特与经典比特的本质不同点(2.1-3)若量子比特用光子的偏振态来表示,即表示垂直偏振光,表示水平偏振光,则对应于偏光↗的状态:对应于偏光↘的状态:︱↗〉(2.1-4)︱↗〉(2.1-5)对应于右旋偏振光的状态:对应于左旋偏振光的状态:(2.1-6)(2.1-7)这些状态都可以表示量子比特§2.2量子比特的测定如何从一个qubit获得所要的(经典)信息?如何确定的知道a和b的值可以通过一个测定的过程,将一个qubit的状态以概率幅的方式变换成bit信息量子比特将以下列方式被转换,以概率变换成bit0

概率变换成bit1

状态和的选择方法不同,所获取的经典比特(即bit0和bit1)的发生概率也将不同。若向量表示的qubit为(2.2-1)选择式(2.1-1)则该状态取bit值的概率分别为:取bit0的概率取bit1的概率选择式(2.1-2)则该状态取bit值的概率分别为:取bit0的概率取bit1的概率§2.3量子比特对与量子比特列阵两个经典比特{00,01,10,11}两个量子比特量子比特对可以表示为:(2.3-1)通过测定取经典比特各种列值的概率测定结果出现概率00011011在量子比特对的情况下,我们能够只测定其中某一个qubit的值量子比特对第一位测定的结果:取bit0的概率取bit1的概率量子比特对第一位测定后,剩余第二位qubit的状态将发生变化bit0的概率bit1的概率【例2.3-1】试求贝尔态基矢之一的量子比特对的测量结果解这个量子比特被同时测定时测定结果出现概率0001010011测定该量子比特对第一位的结果:取bit0的概率取bit1的概率剩余的qubit状态为剩余的qubit状态为n个qubit组成量子比特阵列构成维的复向量……返回§2.4量子比特的基本操作X-Gate称为bit反转演算子X-Gate(2.4-1)即(2.4-2)易见(2.4-3)(2.4-5)X-Gate是幺正矩阵复矩阵U是幺正矩阵的充分必要条件:(2.4-4)Z-Gate称为位相反转演算子Z-GateZ-Gate作用到状态和上状态发生变化(2.4-6)Z-Gate也是幺正矩阵(2.4-7)H-GateH-GateH-Gate作用到状态和上状态发生变化(2.4-8)连续两次作Hadamard变换的演算等于一次恒等变换(2.4-9)H-Gate也是幺正矩阵(2.4-10)量子演算子的组合(2.4-11)ZX也是幺正矩阵(2.4-12)

对于单一qubit的3个常用演算子(量子逻辑门电路)控制非门(Controlled-Not-Gate)Controlled-Not-Gate控制非门电路表示控制非门的输入、输出关系输入状态输出状态3个控制非门组成的简单量子回路的输入、输出关系第三章量子纠缠状态及其应用§3.1

量子纠缠状态§

3.2量子高密度编码§3.3采用量子比特的通信界限§

3.4量子瞬间传递(Teleportation隐形传态)§3.5量子纠缠状态的交换§3.1量子纠缠状态量子纠缠态再看如下的叠加状态(3.1-1)(3.1-2)也是纠缠态一、量子纠缠态Bell基矢(最大纠缠态)(3.1-3)贝尔基矢是qubit对的一组正规直交基底(3.1-4)(3.1-5)量子纠缠态的生成法图3.1-1生成贝尔状态的量子状态变换回路量子纠缠态呈现出特殊的性质1.密钥密码二、量子密钥分配(Quantumkeydistribution,QKD)Ceaser密码将26个拉丁字母书写的原文按确定的错位规则重新编写成密文的技术。(3.1-6)编码译码(3.1-7)单时拍密码单时拍密码方案第一步:信息的发送者制备与原文()同长度的单时拍密钥(),以便与接收者共用。第二步:发送者将原文编成密文发送给接收者第三步:接收者用密钥将密文复原成原文公开钥密码RSA密码方案第一步(接收者):由两个自然数组成的公开钥(e,n)和密钥(d,n)的制作方法如下(必须满足n>m):设原文为m。考虑用RSA编码方法制作相应的公开钥和密钥。(a)选取两个其乘积大于m的大素数p和q,并求出它们的乘积n=pq和欧拉函数(b)选取比n小且满足gcd()=1的数e(c)寻找满足和以为模的同余式的数d。销毁p、qRSA密码方案第二步(接收者):将做成的公开钥(e,n)用网络等公开手段发送给接收者第三步(发送者):如果n>m,则利用公开钥(e,n),由待送的原文m计算并将密文y发送给接收者第四步(接收者):根据由发送者传来的密文并利用密钥(d,n)计算用户A用户B第一位第二位测定结果测定自己拥有的qubit2.量子密钥分配BB84协议利用偏振光进行量子密钥分发的协议。量子高密度编码能够实现1个qubit传送2bit信息的机能§3.2量子高密度编码送信者A收信者B第一位第二位

对应自己想要发送的信息,在自己拥有的qubit上实施操作送信者A实施如下的操作希望发送的信息对送信者拥有的qubit实施的操作实施操作后的纠缠状态00什么操作也不施加01施加X-Gate演算10施加Z-Gate演算11施加X-Gate演算和Z-Gate演算ZX收信者通过基于贝尔状态的测定,能准确地(即概率为1)知道qubit对的状态是4个状态中的哪一个,并能获得送信者发来的信息。判定结果送信信息00011011实现一个qubit传送两个bit值的高密度编码【例3.2-1】借助量子高密度编码原理,考虑送信者希望将bit列10传送给收信者。解送信者将自己拥有的一位qubit施加Z-Gate演算的结果传送给

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论