版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )AB
2、CD12已知向量,则与共线的单位向量为( )ABC或D或3某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元4设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分不必要条件5阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )
3、A120种B240种C480种D600种6若点是角的终边上一点,则( )ABCD7复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限8已知数列,是首项为8,公比为得等比数列,则等于( )A64B32C2D49记的最大值和最小值分别为和若平面向量、,满足,则( )ABCD10如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )ABCD11已知复数满足,则( )ABCD12已知为等差数列,若,则( )A1B2C3D6二、填空题:本题共4小题,每小题5分,共20分。13已
4、知三棱锥中,且二面角的大小为,则三棱锥外接球的表面积为_.14正项等比数列|满足,且成等差数列,则取得最小值时的值为_15在中,若,则 _16函数在区间内有且仅有两个零点,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥EABCD的侧棱DE与四棱锥FABCD的侧棱BF都与底面ABCD垂直,/,.(1)证明:/平面BCE. (2)设平面ABF与平面CDF所成的二面角为,求.18(12分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.19(12分)在中,是边上一点,且,.(1)求的长;(2)若的面积为14,求
5、的长.20(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.21(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记
6、直线的斜率分别为,当取最大值时,求直线的方程.22(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|PB|的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C考点:1抛物线的简单几何性质;2均值不等式【方法点晴】本题主要考查的是向量在解析几何中的
7、应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题2D【解析】根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,则,所以,设与共线的单位向量为,则,解得 或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义.3A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收
8、人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.4A【解析】试题分析:, bm又直线a在平面内,所以ab,但直线不一定相交,所以“”是“ab”的充分不必要条件,故选A.考点:充分条件、必要条件.5B【解析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一
9、至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.6A【解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.7D【解析】由
10、复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标得结论【详解】,对应点为,在第四象限故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复数的运算法则是解题关键8A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.9A【解析】设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,建立平面直角坐标系,设,由,可得,即,化简得点的轨迹方程为,则,则转化为
11、圆上的点与点的距离,转化为圆上的点与点的距离,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.10A【解析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,
12、属于中档题11A【解析】根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.12B【解析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出【详解】an为等差数列,,,解得10,d3,+4d10+111故选:B【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,将的长度求出或用球半
13、径表示,再利用余弦定理即可建立方程解得半径.【详解】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,如图所示因为,所以,又二面角的大小为,则,所以,设外接球半径为R,则,在中,由余弦定理,得,即,解得,故三棱锥外接球的表面积.故答案为:.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.142【解析】先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及
14、等比数列求积、求最值的有关运算,中档题.15【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据, 得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.16【解析】对函数零点问题等价转化,分离参数
15、讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)【解析】(1)根据线面垂直的性质定理,可得DE/BF,然后根据勾股定理计算可得BFDE,最后利用线面平行的判定定理,可得结果.(2)利用建系的方法,可得平面ABF的一个法向量为,平面CDF的法向量为,然后利用向量的夹角公式以及平方关系,可得结果.
16、【详解】(1)因为DE平面ABCD,所以DEAD,因为AD4,AE5,DE3,同理BF3,又DE平面ABCD,BF平面ABCD,所以DE/BF,又BFDE,所以平行四边形BEDF,故DF/BE,因为BE平面BCE,DF平面BCE所以DF/平面BCE;(2)建立如图空间直角坐标系,则D(0,0,0),A(4,0,0),C(0,4,0),F(4,3,3), 设平面CDF的法向量为,由,令x3,得,易知平面ABF的一个法向量为,所以,故.【点睛】本题考查线面平行的判定以及利用建系方法解决面面角问题,属基础题.18(1)当时,在上增;当时,在上减,在上增(2)【解析】(1)求出导函数,分类讨论确定的正
17、负,确定单调区间;(2)题意说明,利用导数求出的最小值,由(1)可得的最小值,从而得出结论【详解】解:(1)定义域为当时,即在上增;当时,即得得综上所述,当时,在上增;当时,在上减,在上增(2)由题在上增由(1)当时,在上增,所以此时无最小值;当时,在上减,在上增,即,解得综上【点睛】本题考查用导数求函数的单调区间,考查不等式恒成立问题,解题关键是掌握转化与化归思想,本题恒成立问题转化为,求出两函数的最小值后可得结论19(1)1;(2)5.【解析】(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构建方程求得AB,再由任意三角形的面
18、积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【详解】(1)据题意,且,所以.所以.在中,据正弦定理可知,所以.(2)在中,据正弦定理可知,所以.因为的面积为14,所以,即,得.在中,据余弦定理可知,所以.【点睛】本题考查由正弦定理与余弦定理解三角形,还考查了由同角三角函数关系和两角差的正弦公式化简求值,属于简单题.20(1),众数为150;(2) ;(3)【解析】(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,当时,由此能将表示为的函数;(3)利用频率分布直方图能求出利润不少于4800元的概率【详解】(1)由直方图可估计需求量的众数为150 ,由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:估计需求量的平均数为:(2)当时,当时, (3)由(2)知 当时,当时,得开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《货物运输实务》课件 8.2鲜活易腐品运输组织
- 开题报告:新时期香港的国人身份认同教育研究
- 开题报告:新时代大学生劳动教育与职业精神融通路径研究
- 拉森钢板桩租赁费用及计算方式(2024版)3篇
- 2024年工业设备销售协议样本版B版
- 2024年家居油漆翻新标准协议模板
- 2024年专项客户技术信息保护合同范例
- 2024年广告发布代理标准化合同模板
- 2024年专业场地租赁合作协议模板
- 八年级物理期末复习计划
- 移动警务解决方案
- 2021-2022学年黑龙江省牡丹江市宁安市九年级(上)期末数学试卷
- 西洋参培训课件
- 2024年新苏教版五年级上册科学全册知识点(复习资料)
- FURUNO 电子海图 完整题库
- 项目股份买断合同范本
- 网络攻防演练与应急响应
- 华东师大版(2024年新教材)七年级上册数学第3章《图形的初步认识》综合素质评价试卷(含答案)
- 直播主播年度个人工作总结
- 2024年黑龙江省齐齐哈尔市中考数学试题
- 天津市和平区天津益中学校2021-2022学年七年级上学期期末数学试题
评论
0/150
提交评论