2022届四川省广安市武胜烈面高考数学三模试卷含解析_第1页
2022届四川省广安市武胜烈面高考数学三模试卷含解析_第2页
2022届四川省广安市武胜烈面高考数学三模试卷含解析_第3页
2022届四川省广安市武胜烈面高考数学三模试卷含解析_第4页
2022届四川省广安市武胜烈面高考数学三模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )ABCD2已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD3已知x,则“”是“”的( )A充分而

2、不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件4函数的图象大致是( )ABCD5已知集合,集合,则等于( )ABCD6已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD7的展开式中的系数为( )A5B10C20D308设是定义在实数集上的函数,满足条件是偶函数,且当时,则,的大小关系是( )ABCD9已知集合,则的真子集个数为( )A1个B2个C3个D4个10已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D11设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )ABCD12定义运算,则函数的图象是( )ABCD

3、二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_.14学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是_15在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为_.16在的展开式中,的系数等于_三、解答题:共70分。解答应写出文字说明、证明过程或

4、演算步骤。17(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.18(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥. (1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.19(12分)如图,已知椭圆C:x24+y2=1,F为其右焦点,直线l:y=kx+m(km0)与椭圆交于P(x1,y1),Q(x2,y2)两点,点A,B在l上,且满足|PA|=|PF|,|QB|=|QF|,|OA|=|OB|.(点A,P,Q,B从上到下依次排列)(I)试用x1表示|PF|:(II)证明:原点O到直线l的距离为

5、定值.20(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.21(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角, (1)求的值; (2)求边的长.22(10分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用诱导公式以及二倍角公式,将化简为关

6、于的形式,结合终边所在的直线可知的值,从而可求的值.【详解】因为,且,所以.故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.2A【解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.3D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨

7、取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.4B【解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.5B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集

8、合的运算,属于基础题目.6A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.7C【解析】由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,因为展开式的

9、通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.8C【解析】y=f(x+1)是偶函数,f(-x+1)=f(x+1),即函数f(x)关于x=1对称当x1时,为减函数,f(log32)=f(2-log32)= f()且=log34,log343,bac,故选C9C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集10D【解析】根据向

10、量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.11B【解析】由圆过原点,知中有一点与原点重合,作出图形,由,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,点坐标为,代入抛物线方程得,故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点

11、,恐怕难度会大大增加,甚至没法求解12A【解析】由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.【详解】由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.设点,点,即,则,所以.又因为点是圆上的动点,则,故点Q的运功轨迹是以为圆心为半径的圆,又即为该圆上的点与原点间的距离,因为,所以故答案

12、为:【点睛】本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.14C【解析】假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.15【解析】利用,解出,即可求出双曲线的渐近线方程.【详解】,且,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.167【解析】由

13、题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)的增区间为,减区间为;(2).【解析】(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点【详解】解:(1)解:, 当时,解得的增区间为,解得的减区间为. (2)解:若,由得,由得,所以函数的减区间为,增区间为;, 因为,所以,令,则恒成立,由于,当时,故函数在上是减函数,所

14、以成立; 当时,若则,故函数在上是增函数,即对时,与题意不符;综上,为所求【点睛】本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的单调区间,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细18(1)平行,证明见解析;(2).【解析】(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,则平面,在利用锥体的体积公式即可【详解】(1)证明:因翻折后、重合,应是的一条中位线,平面,平

15、面,平面;(2)解:,面且,又,【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题19 (I) |FP|=2-32x1;(II)证明见解析【解析】(I)直接利用两点间距离公式化简得到答案.(II) 设Ax3,y3,Bx4,y4,联立方程得到x1+x2=-8km4k2+1,x1x2=4m2-44k2+1,x3+x4=-2kmk2+1,代入化简得到m2=k2+1,计算得到证明.【详解】(I) 椭圆C:x24+y2=1,故F3,0,|FP|=x1-32+y12=x1-32+1-14x12=34x12-23x1+4=2-32x1.(II)设Ax3,y3,Bx4,y4

16、,则将y=kx+m代入x24+y2=1得到:4k2+1x2+8kmx+4m2-4=0,故x1+x2=-8km4k2+1,x1x2=4m2-44k2+1,x2-x1=44k2+1-m24k2+1,OA=OB,故y3+y4x3+x4=kx3+x4+2mx3+x4=-1k,得到x3+x4=-2kmk2+1,PA=PF,故1+k2x1-x3=2-32x1,同理:1+k2x4-x2=2-32x2,由已知得:x3x1x2x1x2x4,故1+k2x1+x2-x3+x4=32x2-x1,即1+k2-8km4k2+1+2kmk2+1=234k2+1-m24k2+1,化简得到m2=k2+1.故原点O到直线l的距离

17、为d=m1+k2=1为定值.【点睛】本题考查了椭圆内的线段长度,定值问题,意在考查学生的计算能力和综合应用能力.20(1)(2)【解析】(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解【详解】(1)是等比数列,且成等差数列,即,解得:或,(2)【点睛】本题考查等比数列的通项公式,考查并项求和法及等差数列的项和公式本题求数列通项公式所用方法为基本量法,求和是用并项求和法数列的求和除公式法外,还有错位相关法、裂项相消法、分组(并项)求和法等等21(1) (2)【解析】(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出【详解】(1)因为角 为钝角, ,所以 ,又 ,所以 ,且 ,所以 .(2)因为 ,且 ,所以 ,又 ,则 ,所以 .22(1),; (2).【解析】(1)利用极坐标和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论