2022届甘肃省甘谷县高考考前模拟数学试题含解析_第1页
2022届甘肃省甘谷县高考考前模拟数学试题含解析_第2页
2022届甘肃省甘谷县高考考前模拟数学试题含解析_第3页
2022届甘肃省甘谷县高考考前模拟数学试题含解析_第4页
2022届甘肃省甘谷县高考考前模拟数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1集合中含有的元素个数为( )A4B6C8D122 “完全数”是一些特殊的自然数,它所有的真因子

2、(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )ABCD3已知函数,且),则“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4如果,那么下列不等式成立的是( )ABCD5在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼

3、星的星等是1.45,则太阳与天狼星的亮度的比值为( )A1010.1B10.1Clg10.1D1010.16曲线上任意一点处的切线斜率的最小值为( )A3B2CD17关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像8已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )ABC0D9在各项均为正数的等比数列中,若,则( )AB6C4D510已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D211已知为虚数单位,若复数,则ABCD12已知点,是函数的函

4、数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数B,a为任意非零实数Ca、b均为任意实数D不存在满足条件的实数a,b二、填空题:本题共4小题,每小题5分,共20分。13已知为等比数列,是它的前项和.若,且与的等差中项为,则_.14已知复数z112i,z2a+2i(其中i是虚数单位,aR),若z1z2是纯虚数,则a的值为_15已知,为正实数,且,则的最小值为_.16某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在250,400)内的学

5、生共有_人三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,平面,.()证明:;()若是中点,与平面所成的角的正弦值为,求的长.18(12分)已知在ABC中,角A,B,C的对边分别为a,b,c,且cosBb+cosCc=23sinA3sinC. (1)求b的值;(2)若cosB+3sinB=2,求a+c的取值范围.19(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积20(12分)已知数列的各项均为

6、正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.21(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐标为,求的值22(10分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米)

7、.设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、的表达式;(2)试确定使用哪种运输工具总费用最省.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B2C【解析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组

8、,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.3C【解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.4D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要

9、考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.5A【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.6A【解析】根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.7B【解析】化简到,根据定义域排除,计算单调性知正确,得

10、到答案.【详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.8C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C

11、【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.9D【解析】由对数运算法则和等比数列的性质计算【详解】由题意故选:D【点睛】本题考查等比数列的性质,考查对数的运算法则掌握等比数列的性质是解题关键10D【解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率【详解】解:设,即,又,由可得,即,故选:D【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题11B【解析】因为,所以,故选B12A【解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的

12、切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.14-1【解析】由题意,令即可得解.【详解】z112i,z2a+2i,又z1z2是纯虚数,解得:a1故答案为:1【点

13、睛】本题考查了复数的概念和运算,属于基础题.15【解析】由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.16750【解析】因为0.001+0.001+0.004+a+0.005+0.00350=1,得a=0.006,所以10000.004+0.006+0.00550=750。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()见解析;()【解析】()取的中点,连接,由,得三点共线,且,又,再利用线面垂直的判定

14、定理证明.()设,则,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【详解】()取的中点,连接,由,得三点共线,且,又,所以平面,所以.()设,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以 ,过作,则平面,即点到平面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【点睛】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.18(1)b=32(2)a+c(32,3【解

15、析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinAsinC转化为ac,于是可以求出b的值;(2)首先根据sinB+3cosB=2求出角B的值,根据第(1)问得到的b值,可以运用正弦定理求出ABC外接圆半径R,于是可以将a+c转化为2RsinA+2RsinC,又因为角B的值已经得到,所以将2RsinA+2RsinC转化为关于A的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角B的值后,应用余弦定理及重要不等式a2+c22ac,求出a+c的最大值,当然,此时还要注意到三角形两边

16、之和大于第三边这一条件. 试题解析:(1)由cosBb+cosCc=23sinA3sinC,应用余弦定理,可得a2+c2-b22abc+a2+b2-c22abc=23a3c 化简得2b=3则b=32 (2) cosB+3sinB=212cosB+32sinB=1即sin(6+B)=1 B(0,) B+6=2 所以B=3 法一. 2R=bsinB=1,则a+c=sinA+sinC =sinA+sin(23-A) =32sinA+32cosA =3sin(A+6) 又0A23, 32b=32综上a+c(32,3考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.19(1)(2)【解

17、析】(1)先消去参数,化为直角坐标方程,再利用求解.(2)直线与曲线方程联立,得,求得弦长和点到直线的距离,再求的面积.【详解】(1)由已知消去得,则,所以,所以直线的极坐标方程为(2)由,得,设,两点对应的极分别为,则,所以,又点到直线的距离所以【点睛】本题主要考查参数方程、直角坐标方程及极坐标方程的转化和直线与曲线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.20(1)(2)证明见解析【解析】(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,故.故数列为等比数列,且公比.又当时,.(2).【点睛】本题考查了数列通项公式和

18、证明数列不等式,意在考查学生对于数列公式方法的综合应用.21 (1) 曲线的直角坐标方程为即,直线的普通方程为;(2).【解析】(1)利用代入法消去参数方程中的参数,可得直线的普通方程,极坐标方程两边同乘以利用 即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由,得,所以曲线的直角坐标方程为,即, 直线的普通方程为. (2)将直线的参数方程代入并化简、整理,得. 因为直线与曲线交于,两点所以,解得.由根与系数的关系,得,. 因为点的直角坐标为,在直线上.所以, 解得,此时满足.且,故.【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论