版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D902已知实数x,y满足,则的最小值等于( )ABCD3在一个数列中,
2、如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD4已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD5为计算, 设计了如图所示的程序框图,则空白框中应填入( )ABCD6阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积
3、为( )ABCD7盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )ABCD8已知向量,且与的夹角为,则x=( )A-2B2C1D-19若非零实数、满足,则下列式子一定正确的是( )ABCD10已知锐角满足则( )ABCD11设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D312要得到函数的图象,只需将函数的图象A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2
4、班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有_种.14已知,且,若恒成立,则实数的取值范围是_15已知两点,若直线上存在点满足,则实数满足的取值范围是_16已知函数,则下列结论中正确的是_.是周期函数;的对称轴方程为,;在区间上为增函数;方程在区间有6个根.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥. (1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.18(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点
5、)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.19(12分)椭圆:的左、右焦点分别是,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、三点共线.20(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.21(12分)在锐角中,分别是角,所对的边,的面积,且满足,则的取值范围是( )ABCD22(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)
6、若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.2D【解析】设,去绝对值,根据余弦函数的性质即可求出【详解】因为实数,满足,设,恒成立,故则的最小值等于.故选:【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力
7、和转化能力,意在考查学生对这些知识的理解掌握水平3B【解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.4A【解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解
8、,属于一般性题目.5A【解析】根据程序框图输出的S的值即可得到空白框中应填入的内容【详解】由程序框图的运行,可得:S0,i0满足判断框内的条件,执行循环体,a1,S1,i1满足判断框内的条件,执行循环体,a2(2),S1+2(2),i2满足判断框内的条件,执行循环体,a3(2)2,S1+2(2)+3(2)2,i3观察规律可知:满足判断框内的条件,执行循环体,a99(2)99,S1+2(2)+3(2)2+1(2)99,i1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i1故选:A【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时
9、算法结束,属于基础题6D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.7C【解析】先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即
10、可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.8B【解析】由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.9C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题10C【解析】利用代入计算即可.【详解】由已知,因
11、为锐角,所以,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.11C【解析】先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。12D【解析】先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13156【解析】先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老
12、师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过 “正难则反”的思想进行分析.14(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值15【解析】问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果【详解】解:直线,点,直线上存在点满足,的轨迹方程是如图,直线与圆有公共点,圆心到直线的距离:,解得实数的取值范
13、围为故答案为:【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题16【解析】由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,故正确;当时,此时在上单调递减,在上单调递增,在区间上不是增函数,故错误;作出函数的部分图象,如图所示方程在区间有6个根,故正确.故答案为:.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)平行,证明见解析
14、;(2).【解析】(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,则平面,在利用锥体的体积公式即可【详解】(1)证明:因翻折后、重合,应是的一条中位线,平面,平面,平面;(2)解:,面且,又,【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题18(1)证明见解析(0,2);(2)存在,理由见解析【解析】(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OAOB,求出b,即可知直线过定点(2)由斜率公式分别求出,联立直线与抛物线,椭圆,再由根与系数的关系得,代入,化简即可求解.【详
15、解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,即存在常数满足题意.【点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题19(1);(2)见解析【解析】(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、三点共线,只需证,将分子用纵坐标表示,即可证明结论.【详解】(1)由于,将代入椭圆方程,得,由题意知,即.又,所以,.所以椭圆的方程为.(2)解法一:依
16、题意直线斜率不为0,设的方程为,联立方程,消去得,由题意,得恒成立,设,所以,直线的方程为.令,得.又因为,则直线,的斜率分别为,所以.上式中的分子,.所以,三点共线.解法二:当直线的斜率不存在时,由题意,得的方程为,代入椭圆的方程,得,直线的方程为.则,所以,即,三点共线.当直线的斜率存在时,设的方程为,联立方程消去,得.由题意,得恒成立,故,.直线的方程为.令,得.又因为,则直线,的斜率分别为,所以.上式中的分子所以.所以,三点共线.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练掌握根与系数关系,设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.20(1)证明见解析(
17、2)【解析】(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角【详解】证明:(1)因为平面,平面,所以.因为四边形是菱形,所以.又因为,平面,平面,所以平面.解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,因为与平面所成角为,即,所以又,所以,所以所以设平面的一个法向量,则令,则.因为平面,所以为平面的一个法向量,且所以,所以二面角的正弦值为.【点睛】本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算21A【解析】由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【详解】由题意,在锐角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能制造概论-全套课件
- 2024年小型厂房租赁协议模板
- 不动产财产赠予协议2024专业
- 2024年企业员工食堂承包服务协议
- 2024年合作伙伴投资合作协议模板
- 2024商业翻译服务协议化样本
- 2024年统编版七年级上册道德与法治期中综合训练
- 2024年度团购房购买协议
- 2023-2024学年浙江省乐清市白象中学高三4月综合测试(二模)数学试题试卷
- 2024商用场地租赁协议样本
- 未成年人图书馆文献分类排架讲座(修订)概要课件
- 教科版五年级科学上册(风的作用) 教学课件
- 盐酸-危险化学品安全标签
- 二年级下册语文试题 -“诗词大会”题库二 (word版有答案) 人教部编版
- 部编版道德与法治三年级上册知识点
- SB/T 10843-2012金属组合货架
- GB/T 4337-2015金属材料疲劳试验旋转弯曲方法
- GB/T 40120-2021农业灌溉设备灌溉用热塑性可折叠软管技术规范和试验方法
- 各专业试验报告-nvh m301s1样车测试报告
- 化工课件-S-Zorb装置运行特点及故障处理
- 头发及头皮知识讲述资料课件
评论
0/150
提交评论