版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知非零向量满足,且与的夹角为,则( )A6BCD32已知数列为等差数列,为其前项和,则( )A7B14C28D843在中,点满足,则等于( )A10B9C8D74正的边长为2,将它
2、沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD5将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD6中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( )A96里B72里C48里D24里7已知实数满足约束条件,则的最小值是ABC1D48已知函数,若函数在上有3个零点,则实数的
3、取值范围为( )ABCD9已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知集合,则的子集共有( )A个B个C个D个11正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B21C12D612如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_.14数列满足递推公式,且,则_.1
4、5某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为_.16已知等比数列的各项都是正数,且成等差数列,则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)设,若存在两个极值点,且,求证:;(2)
5、设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).18(12分)如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,n)表示位于第i行第j列的实数,且aij1,-1.记S(n,n)为所有这样的数表构成的集合对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积令a11a12a1na21a22a2nan1an2ann()请写出一个AS(4,4),使得l(A)=0;()是否存在AS(9,9),使得l(A)=0?说明理由;()给定正整数n,对于所有的AS(n,n),求l(A)的取值集合19(12分)如图为某大江的一段支流,岸线与近似满足,宽度为圆
6、为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切设 (1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?20(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.21(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种
7、花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.22(10分)如图所示,在三棱锥中,点为中点(1)求证:平面平面;(2)若点为中点,求平面与平面所成锐二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可【详解】解:非零向量,满足,可知两个向量垂直,且与的夹角为,说明以向量,
8、为邻边,为对角线的平行四边形是正方形,所以则故选:【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题2D【解析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3D【解析】利用已知条件,表示出向量 ,然后求解向量的数量积【详解】在中,点满足,可得 则=【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量4D【解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球
9、心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形
10、中来计算,本题有一定的难度.5B【解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.6B【解析】人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.7B【解析】作出该不等式组
11、表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B8B【解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.9D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交
12、;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题10B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.11B【解析】先找到与平面平行的平面,利用面面平行的定义
13、即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.12A【解析】联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将
14、 ,代入,利用韦达定理,可得 ,从而可知以为直径的圆经过原点O.【详解】设点,由题意可得,可得,设直线的方程为,代入抛物线可得,以AB为直径的圆经过原点.故答案为:(0,0)【点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.142020【解析】可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,将以上式子累加得.由得.令,有.故答案为:2020【点睛】本题考查数列递推式和累加法的应用,属于基础题15【解析】对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分
15、组,综合可得出结论.【详解】依题意,名学生分成组,则一定是个人组和个人组.若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是
16、师长;若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.综上所述,新加入学生可以扮演种角色.故答案为:.【点睛】本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.16【解析】根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的
17、各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)先求出,又由可判断出在上单调递减,故,令,记, 利用导数求出的最小值即可;(2)由在上不单调转化为在上有解,可得,令,分类讨论求的最大值,再求解即可.【详解】(1)已知,由可得, 又由,知在上单调递减,令,记,则在上单调递增;,在上单调递增;,(2),在上不单调,在上有正有负,在
18、上有解,恒成立,记,则,记,在上单调增,在上单调减. 于是知(i)当即时,恒成立,在上单调增,.(ii)当时,故不满足题意.综上所述,【点睛】本题主要考查了导数的综合应用,考查了分类讨论,转化与化归的思想,考查了学生的运算求解能力.18()答案见解析;()不存在,理由见解析;()【解析】()可取第一行都为-1,其余的都取1,即满足题意;()用反证法证明:假设存在,得出矛盾,从而证明结论;()通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2,以此类推可得到Ak【详解】()答案不唯一,如图所示数表符合要求.()不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,所
19、以,.,.,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而,相矛盾,从而不存在,使得.()记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有,注意到,下面考虑,.,.,中-1的个数,由知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,所以,由k的任
20、意性知,l(A)的取值集合为.【点睛】本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.19(1),定义域是(2)百万【解析】(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【详解】以为原点,直线为轴建立如图所示的直角坐标系 设,则,因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直线的方程中,令,得,所以,所以当时,设锐角满足,则,所以关于的函数是,定义域是(2)要使建造此通道费用最少,只要通道的长度即
21、最小令,得,设锐角,满足,得列表:0减极小值增所以时,所以建造此通道的最少费用至少为百万元【点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题21(1),.,.(2)当百米时,两条直道的长度之和取得最小值百
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度房屋装修设计合同2篇
- 2024年供热供气工程施工合同
- 2024年专业物流企业员工雇佣协议范本版B版
- 2024专项景石采购协议条款版
- 全新自由职业者税后薪酬代发服务合同2024版2篇
- 江南大学《产品设计2》2021-2022学年第一学期期末试卷
- 2024商品房住房贷款合同
- 2024专业外墙清洁服务协议模板
- 暨南大学《口腔固定修复学》2021-2022学年第一学期期末试卷
- 济宁学院《商务英语视听说I》2021-2022学年第一学期期末试卷
- 体育场馆安全管理与风险排查治理制度
- 2024年消防安全知识培训
- 2024年商标使用许可协议:国际知名品牌在中国市场授权
- 2024年北京第二次高中学业水平合格信息技术试卷试(含答案详解)
- 大象版(2024)小学科学一年级上册教学设计(附教材目录)
- 餐饮服务电子教案 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 一起某诊所违规开展远程动态心电图诊断服务的案例分析
- 2024年全国半导体行业职业技能竞赛(半导体芯片制造工赛项)理论考试题库(含答案)
- 北师大版数学一年级上册期中考试试题
- 钢结构厂房施工方案
- 2023-2024公需科目(数字经济与驱动发展)考试题库及答案
评论
0/150
提交评论