2021-2022学年上海市北蔡高中高三第二次调研数学试卷含解析_第1页
2021-2022学年上海市北蔡高中高三第二次调研数学试卷含解析_第2页
2021-2022学年上海市北蔡高中高三第二次调研数学试卷含解析_第3页
2021-2022学年上海市北蔡高中高三第二次调研数学试卷含解析_第4页
2021-2022学年上海市北蔡高中高三第二次调研数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列满足,且,则的值是( )ABC4D2已知函数满足,当时,则( )A或B或C或D或3已知,则( )ABCD4赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦

2、为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )ABCD5已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD6函数 的部分图象如图所示,则 ( )A6B5C4D37若、满足约束条件,则的最大值为( )ABCD8已知数列满足,则( )ABCD9某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:

3、m3)的频率分布直方图如图所示,则小区内用水量超过15 m3的住户的户数为( )A10B50C60D14010若复数z满足,则( )ABCD11设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD12已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,是平面向量,是单位向量.若,且,则的取值范围是_.14二项式的展开式中项的系数为_15如图是一个算法伪代码,则输出的的值为_.16设Sn为数列a

4、n的前n项和,若an0,a1=1,且2Sn=an(an+t),nN*,则S10=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.18(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程19(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值20

5、(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.21(12分)已知的内角、的对边分别为、,满足.有三个条件:;.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.22(10分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】 由,可得,

6、所以数列是公比为的等比数列, 所以,则, 则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.2C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象

7、函数给出式子的意义,比如:,考验分析能力,属中档题.3D【解析】分别解出集合然后求并集.【详解】解:, 故选:D【点睛】考查集合的并集运算,基础题.4A【解析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可【详解】在中,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题5D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以

8、,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6A【解析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【详解】由图象得,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简

9、单题.7C【解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.8C【解析】利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,故.故选:C.【点睛】本题考查利用求,同时

10、也考查了裂项求和法,考查计算能力,属于中等题.9C【解析】从频率分布直方图可知,用水量超过15m的住户的频率为,即分层抽样的50户中有0.350=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C10D【解析】先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.11C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单

11、几何性质,圆的方程的有关计算,考查了学生的计算能力.12C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解【详解】由是单位向量若,设,则,又,则,则,则,又,所以,(当或时取等)即的取值范围是,故答案为:,【点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平1415【解析】由题得,令,解得,代入可得展开式中含x6项的系数.【详解

12、】由题得,令,解得,所以二项式的展开式中项的系数为.故答案为:15【点睛】本题主要考查了二项式定理的应用,考查了利用通项公式去求展开式中某项的系数问题.155【解析】执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.1655【解析】由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,当时,由,可得,两式相减,可得,整理得,即,数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.三、解答题:共70分。解答应

13、写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.18();()【解

14、析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:()过点的直线方程为,则原点到直线的距离,由,得,解得离心率.()由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得.从而.于是.由,得,解得.故椭圆的方程为.19(1)(2)的周长为,时,的周长为【解析】(1)设的方程为,根据题意由点到直线的距离公式可得,将直线方程与抛物线方程联立可得,设坐标分别是,利用韦达定理以及中点坐标公式消参即可求解.(2)

15、根据抛物线的定义可得,由(1)可得,再利用弦长公式即可求解.【详解】(1)设的方程为于是联立设坐标分别是则设的中点坐标为,则消去参数得:(2)设,由抛物线定义知,由(1)知,的周长为时,的周长为【点睛】本题考查了动点的轨迹方程、直线与抛物线的位置关系、抛物线的定义、弦长公式,考查了计算能力,属于中档题.20(1);(2)10【解析】(1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程;(2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即可求解.【详解】(1)由题意,曲线C的参数方程为,消去参数,可得曲线C

16、的普通方程为,即,又由,代入可得曲线C的极坐标方程为.(2)将代入,得,即,所以=,其中,当时,取最大值,最大值为10.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及曲线的极坐标方程的应用,着重考查了运算与求解能力,属于中档试题.21(1);(2).【解析】(1)先求出角,进而可得出,则中有且只有一个正确,正确,然后分正确和正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,为钝角,与矛盾,故中仅有一个正确,正确.显然,得.当正确时,由,得(无解);当正确时,由于,得;(2)如图,因为,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论