版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1ABC中,如果lgcosA=lgsinC-lgsinB=-lg2,则ABC的形状是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形2如图,平面四边形中,现将沿翻折,使点移动
2、至点,且,则三棱锥的外接球的表面积为( )ABCD3关于的不等式的解集是,则关于的不等式的解集是( )ABCD4复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限5本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A72种B144种C288种D360种6已知集合Myy2x,x0,Nxylg(2xx2),则MN为( )A(1,)B(1,2)C2,)D1,)7已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )A
3、BCD8已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD9函数图像可能是( )ABCD10总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A08B07C02D0111算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十
4、六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD12若,则函数在区间内单调递增的概率是( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13已知正实数满足,则的最小值为 14已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为_15某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,得到的频率分布直方图如图所示,则下列说法中正确的是_(填序号);这名学生中数学成绩在
5、分以下的人数为;这名学生数学成绩的中位数约为;这名学生数学成绩的平均数为16已知若存在,使得成立的最大正整数为6,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.18(12分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求的值.19(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点
6、,过点作圆的两条切线,切点分别为,求证:直线恒过一个定点.20(12分)如图,椭圆的左、右顶点分别为,上、下顶点分别为,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点(1)求椭圆的标准方程;(2)求四边形面积的取值范围21(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.22(10分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券若在获得了元购物券的人中随机抽取人赠其纪念
7、品,求获得纪念品的人中仅有人是女顾客的概率附表及公式:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】化简得lgcosAlgsinCsinBlg2,即cosA=sinCsinB=12,结合0A, 可求A=3,得B+C=23代入sinC12sinB,从而可求C,B,进而可判断.【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosAlgsinCsinBlg2,cosA=sinCsinB=12,0A0=y|y1,N=x|y=lg(2x-x2)=x|2x-x20=x|x2-2x0=x|0 x2,MN=(1
8、,2)故选B7D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,
9、代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题8D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦
10、函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.10D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.11C【解析】将圆锥的体积用两种方式表达,即,解出
11、即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.12B【解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.二、填空题:本题共4小题,每小题5分,共20分。134【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换
12、的方法构造和或积为常数的式子,然后利用基本不等式求解最值14【解析】设弦所在的直线与椭圆相交于、两点,利用点差法可求得直线的斜率,进而可求得直线的点斜式方程,化为一般式即可.【详解】设弦所在的直线与椭圆相交于、两点,由于点为弦的中点,则,得,由题意得,两式相减得,所以,直线的斜率为,所以,弦所在的直线方程为,即.故答案为:.【点睛】本题考查利用弦的中点求弦所在直线的方程,一般利用点差法,也可以利用韦达定理设而不求法来解答,考查计算能力,属于中等题.15【解析】由频率分布直方图可知,解得,故不正确;这名学生中数学成绩在分以下的人数为,故正确;设这名学生数学成绩的中位数为,则,解得,故正确;这名学
13、生数学成绩的平均数为,故不正确综上,说法正确的序号是16【解析】由题意得,分类讨论作出函数图象,求得最值解不等式组即可.【详解】原问题等价于,当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;综上,满足条件的取值范围为.故答案为:【点睛】本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2) 由的几何意义得
14、,. 将代入抛物线C的方程,利用韦达定理,即可求得结果.【详解】(1)因为,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.18;.【解析】利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正弦定理求出的值.【详解】解:,由正弦定理得:,又,为三角形内角,故,则,故,;(2)平分,设,则,,则,又,则在中,由正弦定理:,.【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础
15、题.19(1);(2)证明见解析.【解析】(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,由,结合斜率公式化简得出,即,满足,由的任意性,得出直线恒过一个定点.【详解】(1)依题意得,解得即椭圆:;(2)设点,其中,由,得,即,注意到,于是,因此,满足由的任意性知,即直线恒过一个定点.【点睛】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.20(1);(2).【解析】(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)当直线斜率不存在时,易求坐标,从而得到所求面积;当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定
16、理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),为等边三角形,椭圆的标准方程为(2)设四边形的面积为当直线的斜率不存在时,可得,当直线的斜率存在时,设直线的方程为,设,联立得:,面积令,则,令,则,在定义域内单调递减,综上所述:四边形面积的取值范围是【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.21(1);(2).【解析】(1)对分三种情况讨论,分别去掉绝对值符号,
17、然后求解不等式组,再求并集即可得结果; (2).作出函数的图象, 当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想22有的把握认为顾客购物体验的满意度与性别有关;.【解析】由题得,根据数据判断出顾客购物体验的满意度与性别有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技类展会成果评估与科技转化思考
- 供暖服务运维方案投标方案供暖服务运维投标方案(技术方案)
- 二零二五年度存量房买卖合同与装修工程委托管理服务合同4篇
- 2025年仁爱科普版九年级地理下册月考试卷
- 2025年苏教新版九年级历史下册月考试卷
- 2025年人教新起点选修6历史上册月考试卷含答案
- 2025年教科新版七年级物理上册阶段测试试卷含答案
- 2025年北师大版八年级生物下册月考试卷
- 2025年苏教新版九年级历史上册阶段测试试卷含答案
- 2025年新世纪版选择性必修3历史下册月考试卷含答案
- 2024年中考语文满分作文6篇(含题目)
- 第一节-货币资金资料讲解
- 如何提高售后服务的快速响应能力
- 北师大版 2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“拓展型”专项练习(原卷版+解析)
- 2023年译林版英语五年级下册Units-1-2单元测试卷-含答案
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 施工管理中的文档管理方法与要求
- DL∕T 547-2020 电力系统光纤通信运行管理规程
- 种子轮投资协议
- 执行依据主文范文(通用4篇)
- 浙教版七年级数学下册全册课件
评论
0/150
提交评论