版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验一一、 实验原理1. 最小错误率贝叶斯决策规则: 对于两类问题,最小错误率贝叶斯决策有如下判决规则: 由于先验概率可以确定,与当前样本无关,所以决策规则也可整理成下面的形式: 2. 平均错误率决策边界把轴分割成两个区域,分别称为第一类和第二类的决策区域.样本在中但属于第二类的错误概率和样本在中但属于第一类的错误概率就是出现错误的概率,再考虑到样本自身的分布后就是平均错误率:3. 此实验中的判决门限和平均错误率(1) 判决门限假设随机脉冲信号中0的概率为,高斯噪声信号服从,信号叠加时的放大倍数为,叠加后的信号为。由最小错误率贝叶斯决策可得:化简计算得: (2) 平均错误率由上述积分式可计算。
2、二、 实验内容1、 已知均值和方差,产生高斯噪声信号,计算其统计特性实验中利用MATLAB产生均值为0,方差为1的高斯噪声信号,信号统计分布的程序和结果如下:%产生高斯噪声并统计其特性 x=0;%均值为0 y=1;%方差为1 n=normrnd(x,y,1 1000000);%产生均值为0,方差为1的高斯噪声 m1=mean(n);%高斯噪声的均值 v1=var(n); %高斯噪声的方差 figure(1) plot(n(1:400); title('均值为0,方差为1的高斯噪声'); figure(2) hist(n,10000); title('高斯噪声的统计特性&
3、#39;); 得到m1=-4.6534e-005;v1= 0.9971。2. 已知随机脉冲信号中0和1的出现概率,产生该随机脉冲信号,分析其统计特性实验中利用MATLAB产生随机脉冲信号,信号统计分布的特性程序及结果如下:%随机脉冲信号及其统计特性p=unidrnd(10000,1,1000000);%产生1到100000之间均匀分布的随机序列p0=0.4;f=p>(p0*10000);%设置门限,此时0的概率为0.4,1的概率为0.6m2=mean(f);v2=var(f);figure(3);stairs(f(1:400);title('随机脉冲信号');axis(0
4、 400 -0.2 1.2);figure(4)hist(f,-0.2:0.01:1.2);title('随机脉冲序列的统计特性');得到:m2=0.5995; V2=0.2401。3.在随机脉冲信号中叠加高斯噪声信号,在不同的参数设置下分析其统计特性 用MATLAB将两个信号叠加,并分析其统计特性,具体程序及结果如下:%随机脉冲信号叠加高斯噪声信号及其统计特性a=5;%取随机信号的幅度为5s=f*a+n;%对高斯噪声信号和随机脉冲序列进行叠加m3=mean(s);%信号的均值v3=var(s);%信号的方差subplot(2,1,1);stairs(s(1:400);%绘制部
5、分叠加信号title('叠加后的信号');subplot(2,1,2);hist(s,1000)%绘图分析叠加后信号的统计特性title('叠加后信号的统计特性')得到m3=2.9994;v3= 6.9964;4. 依据最小错误概率贝叶斯决策原理,确定判决门限,完成信号检测,计算两类错误率设判决门限为t,平均错误率为e,利用MATLAB计算t和e,具体程序和结果如下:%确定判决门限,完成信号检测,计算两类错误率a=5;p0=0.4;%第一类先验概率为0.4t=(a2 -2*v1*(log(1-p0)-log(p0)/(2*a);%利用贝叶斯决策计算判别门限s1=
6、s>t;%执行判决e1=sum(f-s1)=-1)/(1000000*p0);%计算虚警率e2=sum(f-s1)=1)/(1000000*(1-p0);%计算漏检率e=e1*p0+e2*(1-p0);%计算平均错误率得到:判决门限t=2.4189,平均错误率e=0.0060。5. 改变判决门限,绘制曲线在MATLAB中调用ROC函数,程序及绘制的曲线如下所示:(1)利用贝叶斯最小错误概率绘制ROC曲线Smin=min(s1);Smax=max(s1);o=(s1-Smin)/(Smax-Smin);%对s进行归一化处理tpr,fpr,thresholds=roc(f,o);%调用roc
7、函数plotroc(f,o);%绘制ROC曲线title('ROC曲线')(2)改变判决门限,令t=1.8, 2.0, 2.2, 2.4, 2.6, 2.8,得到的平均错误概率分别为e=0.0148,0.0099,0.0071, 0.0060,0.0068, 0.0068。数据表明,贝叶斯决策平均错误率理论上是最小错误概率。6.改变随机脉冲信号与高斯噪声的参数,重复以上实验(1)其他条件不变,改变高斯噪声的均值,取均值=2,方差=1。由上例得到:均值为1,方差为2时,t= 2.4188,e=0.1353。当其他条件不变时,高斯白噪声均值判决门限,从而决定平均错误率。由此可看出,
8、高斯噪声的均值对最小错误率贝叶斯决策的判决门限有影响,均值越大,判决门限越大,对平均错误率影响越大。(2) 其他条件不变,改变高斯噪声的方差,分别取方差=0.5、2,用matlab绘制曲线如下图所示:当方差=0.5时,判决门限t=2.4797基本不变,平均错误率e几乎接近于0;当方差=2时,判决门限t=2.1760,变化不大,但平均错误率e=0.1028,明显大大增大。由此可看出,高斯噪声的方差对最小错误率贝叶斯决策的判决门限影响较小,对平均错误率的影响很大,方差越大,平均错误率也越大。(3) 其他条件不变,改变随机脉冲中01的概率,分别取P0=.,.得到的曲线如下图所示:P0=0.3时: 此
9、时,判决门限t=2.3303,平均错误率e=0.0056。P0=0.9时:此时,判决门限t=2.9401,平均错误率e=0.0035。先验概率对判决门限和平均错误率均有影响。()其他条件不变,改变信号叠加时的放大倍数,分别取放大倍数得到的曲线如下图所示:当=2时,判决门限变t=0.7969,平均错误率e=0.1539;当a=8时,判决门限t= 3.9492,平均错误率e= 3.7000e-005。由此可看出,放大倍数对判决门限和平均错误率均有影响,且放大倍数越大,判决门限越大,平均错误率越小。三、误差分析 由实验原理中的平均错误率积分式可得理论上的平均错误率,下面通过matlab计算理论上的平均错误率。程序和结果如所示:%误差分析t=(-10000:0.01:2.42); %确定t的取值范围及步长x1=0.6.*(1/(sqrt(2.*pi).*exp(-(t-5).2)/2);e1=trapz(x1).*t(2);%用求和法求积分x2=0.4.*(1/(sqrt(2.*pi).*exp(-(t.2)/2);e2=trapz
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年分期付款购买旅行保险协议
- 2025年分期付款债务协议
- 2025年利润分配增资协议
- 2025年借壳上市管理协议
- 2025年新能源汽车核心部件贴牌制造协议3篇
- 2025年AI智能消费金融科技合作协议样本
- 2025年在线购物优惠活动协议
- 二零二五版SAP系统企业级数据仓库建设合同2篇
- 2025年度毛石挡墙施工质量检测合同模板下载4篇
- 2025版马戏团动物福利与保护合同3篇
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论