2018-2019学年安徽省普通高中学业水平数学试题Word版含解析_第1页
2018-2019学年安徽省普通高中学业水平数学试题Word版含解析_第2页
2018-2019学年安徽省普通高中学业水平数学试题Word版含解析_第3页
2018-2019学年安徽省普通高中学业水平数学试题Word版含解析_第4页
2018-2019学年安徽省普通高中学业水平数学试题Word版含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上2018-2019学年安徽省普通高中学业水平数学试题一、选择题(本大题共 18 小题,每小题 3 分,满分 54 分每小题 4 个选项中,只有 1 个选项符合题目要求) 1已知集合 A=1,3,5,B=1,1,5,则 AB 等于( ) A1,5 B1,3,5 C1,3,5 D1,1,3,5 2一个几何体的三视图如图所示,则该几何体可以是( ) A棱柱 B棱台 C圆柱 D圆台 3为研究某校高二年级学生学业水平考试情况,对该校高二年级 1000 名学生进行编号,号码为 0001,0002,0003,1000,现从中抽取所有编号末位数字为 9 的学生的考试成绩进行分析,这种

2、抽样方法是( ) A抽签法 B随机数表法 C系统抽样法 D分层抽样法 4log2210=( ) A5 B5 C10 D10 5若函数 y=f(x),x5,12的图象如图所示,则函数 f(x)的最大值为( ) A5 B6 C1 D1 6不等式(x+2)(x1)0 的解集为( ) Ax|x2 或 x1 Bx|2x1 Cx|x1 或 x2 Dx|1x2 7圆 x2+y2+2x4y+1=0 的半径为( ) A1 B2 C2 D4 8如图,在 ABCD 中,点 E 是 AB 的中点,若( ) A D 9点 A(1,0)到直线 x+y2=0 的距离为( ) A B C1 D2 10下列函数中,是奇函数的是

3、( ) Ay=2x By=3x2+1 Cy=x3x Dy=3x2+1 11sin72cos63+cos72sin63的值为( ) 2222A1 B1 C D 2212若 A 与 B 互为对立事件,且 P(A)=0.6,则 P(B)=( ) A0.2 B0.4 C0.6 D0.8 13点 P(x,y)在如图所示的平面区域(含边界)中,则目标函数 z=2x+y 的最大值( ) A0 B6 C12 D18 14直线经过点 A(3,4),斜率为,则其方程为( ) A3x+4y25=0 B3x+4y+25=0 C3x4y+7=0 D4x+3y24=0 15如图,在四面体 A-BCD 中,AB平面 BCD

4、,BCCD,若 AB=BC=CD=1,则 AD=( ) A1 B2 C3 D2 16已知两个相关变量 x,y 的回归方程是,下列说法正确的是( ) A当 x 的值增加 1 时,y 的值一定减少 2 B当 x 的值增加 1 时,y 的值大约增加 2 C当 x=3 时,y 的准确值为 4 D当 x=3 时,y 的估计值为 4 17某企业 2 月份的产量与 1 月份相比增长率为 p,3 月份的产量与 2 月份相比增长率为 q(p0,q0),若该企业这两个月产量的平均增长率为 x,则下列关系中正确的是( ) Ax Bx Cx Dx 18已知函数 f(x)=sinxlnx(0x2)的零点为 x0有 0a

5、bc2 使 f(a)f(b) f(c)0 则下列结论不可能成立的是( ) Ax0a Bx0b Cx0c Dx0 二、填空题(本大题共 4 小题,每小题 4 分,满分 16 分,把答案填在题中的横线上.) 19已知数列an满足 a1=2,an+1=3an2,则 a3= 20如图所示的程序框图,若输入的 a,b 的值分别是 3 和 5,则输出的结果是 21袋中装有质地、大小完全相同的 5 个球,其中红球 2 个,黑球 3 个,现从中任取一球,则取出黑球的概率为 22已知向量,满足(+2)()=6,且|=1,|=2,则与的夹角为 三、解答题(本大题共 3 小题,每小题 10 分,满分 30 分.解答

6、题应写出文字说明及演算步骤.) 23ABC 内角 A,B,C 所对的边分别为 a,b,c若 cos(B) ()求角 B 的大小; ()若 a=4,c=2,求 b 和 A 的值 24如图,正方体 ABCDA1B1C1D1中,E 为 DD1的中点 ()证明:ACBD1; ()证明:BD1平面 ACE 25已知函数 f(x)=ax,g(x)=b2x的图象都经过点 A(4,8),数列an满足:a1=1,an=f(an1)+g(n)(n2) ()求 a,b 的值; ()求证:数列是等差数列,并求数列an的通项公式; ()求证: 2018-2019学年安徽省普通高中学业水平数学试题参考答案 一、选择题(本

7、大题共 18 小题,每小题 3 分,满分 54 分每小题 4 个选项中,只有 1 个选项符合题目要求) 1(3 分)已知集合 A=1,3,5,B=1,1,5,则 AB 等于( ) A1,5 B1,3,5 C1,3,5 D1,1,3,5 【分析】由 A 与 B,求出两集合的并集即可 【解答】解:A=1,3,5,B=1,1,5, AB=1,1,3,5故选:D 【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键 2(3 分)一个几何体的三视图如图所示,则该几何体可以是( ) A棱柱 B棱台 C圆柱 D圆台 【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形 【解

8、答】解:由三视图知,从正面和侧面看都是梯形, 从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选:D 【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查 3(3 分)为研究某校高二年级学生学业水平考试情况,对该校高二年级 1000 名学生进行编号,号码为 0001,0002,0003,1000,现从中抽取所有编号末位数字为 9 的学生的考试成绩进行分析,这种抽样方法是( ) A抽签法 B随机数表法 C系统抽样法 D分层抽样法 【分析】根据系统抽样的定义即可得到结论 【解答】解:抽取所有编号末位数字为 9 的学生的考试成绩进

9、行分析, 样本间距相同, 则满足系统抽样的定义,故选:C 【点评】本题主要考查系统抽样的判断,比较基础 4(3 分)log2210=( ) A5 B5 C10 D10 【分析】根据对数的运算法则计算即可 【解答】解:log2210=10log22=10,故选:C 【点评】本题主要考查了对数的运算法则,属于基础题 5(3 分)若函数 y=f(x),x5,12的图象如图所示,则函数 f(x)的最大值为( ) A5 B6 C1 D1 【分析】直接运用函数最值的几何意义及图象可求 【解答】解:由所给函数的图象及最值的几何意义可知,函数的最大值为 6,故选:B 【点评】该题考查函数的最值及其几何意义,属

10、基础题 6(3 分)不等式(x+2)(x1)0 的解集为( ) Ax|x2 或 x1 Bx|2x1 Cx|x1 或 x2 Dx|1x2 【分析】求解一元二次不等式的步骤为:(1)研究一元二次不等式对应的方程根的情况;(2)画出对应的一元二次函数的图象;(3)结合图象得不等式的解集 【解答】解:因为(x+2)(x1)=0 的两根为2 和 1, 所以 y=(x+2)(x1)的图象为开口方向向上,与 x 轴的交点为(2,0)和(1,0)的二次函数, 因此满足(x+2)(x1)0 的部分为 x 轴上方的,即所求不等式的解集为:x|x2 或 x1,故选:A 【点评】本题考察一元二次不等式的解法,掌握上述

11、步骤,注意数形结合,一元二次不等式的求解在集合的关系与运算和函数性质的研究中经常出现 7(3 分)圆 x2+y2+2x4y+1=0 的半径为( ) A1 B2 C2 D4 【分析】圆 x2+y2+Dx+Ey+F=0 的半径 r= 【解答】解:圆 x2+y2+2x4y+1=0 的半径: r= 故选:C 【点评】本题考查圆的半径的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用 8(3 分)如图,在 ABCD 中,点 E 是 AB 的中点,若( ) A B C D 【分析】根据向量的加法及共线向量基本定理,相等向量即可表示出 【解答】解:由已知条件得:; 故选:B 【点评】考查向量的加法,

12、共线向量基本定理及相等向量 9(3 分)点 A(1,0)到直线 x+y2=0 的距离为( ) 2A B C1 D2 2【分析】利用点到直线的距离公式求解 【解答】解:点 A(1,0)到直线 x+y2=0 的距离: d= 故选:B 【点评】本题考查点到直线的距离的求法,解题时要认真审题,是基础题 10(3 分)下列函数中,是奇函数的是( ) Ay=2x By=3x2+1 Cy=x3x Dy=3x2+1 【分析】函数奇偶性的判定必须首先要求定义域,如果关于原点对称,再利用等于判定 【解答】解:观察四个选项,函数的定义域都是 R, 其中对于 A,是非奇非偶的函数,对于 B,D 都满足 f(x)=f(

13、x),是偶函数,对于 C,f(x)=f(x),是奇函数;故选:C 【点评】本题考查了函数奇偶性的判定,在定义域关于原点对称的情况下,利用 f(x)与 f(x)的关系判断奇偶性 11(3 分)sin72cos63+cos72sin63的值为( ) 221122A B C D 【分析】由两角和的正弦公式易得答案 【解答】解:sin72cos63+cos72sin63 63) 故选:D 【点评】本题考查基础题 12(3 分)若 A 与 B 互为对立事件,且 P(A)=0.6,则 P(B)=( ) A0.2 B0.4 C0.6 D0.8 【分析】对立事件的概率之和为 1 【解答】解:A 与 B 互为对

14、立事件, P(A)+P(B)=1,又P(A)=0.6, P(B)=0.4故选:B 【点评】本题考查了概率为基本性质,属于基础题 13(3 分)点 P(x,y)在如图所示的平面区域(含边界)中,则目标函数 z=2x+y的最大值( ) A0 B6 C12 D18 【分析】利用目标函数的几何意义,即可求最大值 【解答】解:由 z=2x+y 得 y=2x+z,平移直线 y=2x+z, 由图象可知当直线 y=2x+z 经过点(6,0)时,直线 y=2x+z 的截距最大,此时 z 最大 代入目标函数 z=2x+y 得 z=26+0=12即目标函数 z=2x+y 的最大值为 12故选:C 【点评】本题主要考

15、查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法 314(3 分)直线经过点 A(3,4),斜率为 ,则其方程为( ) 4A3x+4y25=0B3x+4y+25=0 C3x4y+7=0 D4x+3y24=0 【分析】利用点斜式即可得出 【解答】解:由点斜式可得:y(x3), 化为 3x+4y25=0故选:A 【点评】本题考查了直线的点斜式方程,属于基础题 15(3 分)如图,在四面体 ABCD 中,AB平面 BCD,BCCD,若 AB=BC=CD=1,则 AD=( ) A1 B2 C3 D2 【分析】利用线面垂直的性质得到 ABCD,结合 CDBC 利用

16、线面垂直的判定得到 CD平面 ABC,所以 CDAC,通过各过各的了可求 AD【解答】解:AB平面 BCD,CD 面 BCD, ABCD,又 CDBC, CD面 ABC, CDAC, 又 AB=BC=CD=1,AD2=AC2+CD2=AB2+BC2+CD2=3, AD=3故选:C 【点评】本题考查了线面垂直的判定定理和性质定理的运用;要证线面垂直,只要证明线线垂直 16(3 分)已知两个相关变量 x,y 的回归方程是,下列说法正确的是( ) A当 x 的值增加 1 时,y 的值一定减少 2 B当 x 的值增加 1 时,y 的值大约增加 2 C当 x=3 时,y 的准确值为 4 D当 x=3 时

17、,y 的估计值为 4 【分析】根据所给的线性回归方程,把 x 的值代入线性回归方程,得到对应的 y 的值,这里所得的 y 的值是一个估计值 【解答】解:当 x=3 时,即当 x=3 时,y 的估计值为 4 故选:D 【点评】本题考查线性回归方程,考查用线性回归方程估计或者说预报 y 的值, 17(3 分)某企业 2 月份的产量与 1 月份相比增长率为 p,3 月份的产量与 2 月份相比增长率为 q(p0,q0),若该企业这两个月产量的平均增长率为 x,则下列关系中正确的是( ) +Ax Bx Cx Dx 22【分析】由题意可得(1+p)(1+q)=(1+x)2,利用基本不等式的性质即可得出【解

18、答】解:由题意可得(1+p)(1+q)=(1+x)2, , ,当且仅当 p=q 时取等号 故选:B 【点评】本题考查了基本不等式的性质,属于基础题 18(3 分)已知函数 f(x)=sinxlnx(0x2)的零点为 x0 有 0abc2 使 f(a)f(b)f(c)0 则下列结论不可能成立的是( ) Ax0a Bx0b Cx0c Dx0 【分析】由题意判断 f(x)的正负,进而求出零点可能的范围 【解答】解:由右图可知, 函数 f(x)=sinxlnx(0x2)先正后负, 则由有 0abc2 使 f(a)f(b)f(c)0 可知, f(a)0,f(b)0,f(c)0 或 f(a)0,f(b)0

19、,f(c)0,则 x0a 不可能;故选:A 【点评】本题考查了函数的零点的判断,属于基础题 二、填空题(本大题共 4 小题,每小题 4 分,满分 16 分,把答案填在题中的横线上.) 19(4 分)已知数列an满足 a1=2,an+1=3an2,则 a3= 10 【分析】由数列的首项和递推式直接代值计算 【解答】解:a1=2,an+1=3an2, a2=3a12=4, a3=3a22=10,故答案为:10 【点评】本题考查由数列递推式求数列的项,考查学生的计算能力 20(4 分)如图所示的程序框图,若输入的 a,b 的值分别是 3 和 5,则输出的结果是 5 【分析】输入的 a,b 的值分别是

20、 3 和 5,由程序框图选择结构的分析不难得出结论 【解答】解:由程序框图知 a=3,b=5,53,即此时 ab 不成立, y=5,从而输出 y 的值为 5 故答案为:5 【点评】本题主要考察程序框图中选择结构的应用,属于基础题 21(4 分)袋中装有质地、大小完全相同的 5 个球,其中红球 2 个,黑球 3 个,现从中任取一球,则取出黑球的概率为 【分析】列出的所有的基本事件即可 【解答】解:所有的基本事件有红 1,红 2,黑 1,黑 2,黑 3,共 5 种,取出黑球的基本事件有 3 种, 3故概率为 53故答案为 5【点评】本题考查了用列举法概率的方法,属于基础题 22(4分)已知向量满足

21、(,且| 为 专心-专注-专业 的夹角【分析】由条件可得求得 =1,再由两个向量的夹角公式求出,再由 的范围求出 的值 【解答】解:设的夹角为 ,向量满足()(,且|, + 2 =1+ 8=6, =1 ,再由 的范围为0,可得 , 故答案为 3【点评】本题主要考查两个向量的夹角公式,求出,是解题的关键,属于中档题 三、解答题(本大题共 3 小题,满分 30 分.解答题应写出文字说明及演算步骤.) 23(10 分)ABC 内角 A,B,C 所对的边分别为 a,b,c若 cos(B)= ()求角 B 的大小; ()若 a=4,c=2,求 b 和 A 的值 【分析】()利用诱导公式,即可求角 B 的

22、大小; ()若 a=4,c=2,利用余弦定理求 b,由正弦定理可得 A 的值 【解答】解:(I),又0, 4 分 (II)由余弦定理得 b2=a2+c22accosB=16+48=12, 解得 = 237 分 由正弦定理可得, 故10 分 【点评】本题考查诱导公式,考查余弦定理、正弦定理,考查学生的计算能力,属于中档题 24(10 分)如图,正方体 ABCDA1B1C1D1中,E 为 DD1的中点 ()证明:ACBD1; ()证明:BD1平面 ACE 【分析】(I)证明 ACBD,且 ACDD1,即可证明 AC平面 BDD1,从而证明ACBD1; ( II)如图所示,证明 OEBD1,即可证明 BD1平面 ACE 【解答】解:(I)证明:在正方体 ABCD 中,连结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论