第2章 电力二极管_第1页
第2章 电力二极管_第2页
第2章 电力二极管_第3页
第2章 电力二极管_第4页
第2章 电力二极管_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、不可控器件不可控器件电力二极管电力二极管2.1 PN结与电力二极管的工作原理 2.2 电力二极管的基本特性 2.3 电力二极管的主要参数 2.4 电力二极管的主要类型第2章PN结与电力二极管的工作原理结与电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管一样 以半导体PN结为基础 由一个面积较大的PN结和两端引线以及封装组成的 从外形上看,主要有螺栓型和平板型两种封装图2-1 电力二极管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号2.11. 二极管的外形、结构和符号二极管的外形、结构和符号 N型半导体和P型半导体结合后构成PN结。图2-2 PN结的形成

2、扩散运动和漂移运动最终达到动态平衡,正、负空间电荷量达到稳定值,形成了一个稳定的由空间电荷构成的范围,被称为空间电荷区空间电荷区。 空间电荷建立的电场被称为内电场内电场或自建电场自建电场,其方向是阻止扩散运动的,另一方面又吸引对方区内的少子(对本区而言则为多子)向本区运动,即漂移运动漂移运动。 交界处电子和空穴的浓度差别,造成了各区的多子向另一区的扩散运动扩散运动,到对方区内成为少子,在界面两侧分别留下了带正、负电荷但不能任意移动的杂质离子。这些不能移动的正、负电荷称为空间电荷空间电荷。PN结与电力二极管的工作原理结与电力二极管的工作原理 2.12. PN结及工作原理结及工作原理2.1PN结与

3、电力二极管的工作原理结与电力二极管的工作原理 3. 电力二极管的工作原理电力二极管的工作原理 当PN结外加正向电压(正向偏置),即P,N时,外电场方向与内电场方向相反,此时扩散运动大于漂移运动,形成扩散电流,称为正向电流IF,如下图所示。PN外电场内电场IF图2-3 电力二极管的工作原理 PN结的正向导通状态结的正向导通状态 电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态。 PN结的反向截止状态结的反向截止状态 PN结的单向导电性。 二极管的基本原理就在于PN结的单向导电性这一主要特征。 PN结的反向击穿结的反向击穿 有雪崩击穿和齐纳击穿两

4、种形式,可能导致热击穿。PN结与电力二极管的工作原理结与电力二极管的工作原理 2.14. PN结的三个工作状态结的三个工作状态 造成电力二极管和信息电子电路中的普通二极造成电力二极管和信息电子电路中的普通二极管管区别区别的一些因素:的一些因素: 正向导通时要流过很大的电流,其电流密度较大,因而额外载流子的注入水平较高,电导调制效应不能忽略。 引线和焊接电阻的压降等都有明显的影响。 承受的电流变化率di/dt较大,因而其引线和器件自身的电感效应也会有较大影响。 为了提高反向耐压,其掺杂浓度低也造成正向压降较大。PN结与电力二极管的工作原理结与电力二极管的工作原理 2.1电力二极管的基本特性电力二

5、极管的基本特性1. 静态特性静态特性主要指其伏安特性伏安特性 IOIFUTOUFU图2-4 电力二极管的伏安特性2.2 当电力二极管承受的正向电压大到一定值(门槛电压门槛电压UTO),正向电流才开始明显增加,处于稳定导通状态。与正向电流IF对应的电力二极管两端的电压UF即为其正向电压降。当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。2. 动态特性动态特性电力二极管的基本特性电力二极管的基本特性2.2动态特性动态特性关断过程关断过程:开关特性开关特性须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。 在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。

6、反映通态和断态之间的转换过程 因结电容的存在,三种状态之间的转换必然有一个过渡过程,此过程中的电压电流特性是随时间变化的。电力二极管的基本特性电力二极管的基本特性 开通过程开通过程: 电力二极管的正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如 1V)。这一动态过程时间被称为正向恢复时间tfr。 电导调制效应起作用需一定的时间来储存大量少子,达到稳态导通前管压降较大。 正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高 。2. 动态特性(续)动态特性(续)2.2b)UFPuiiFuFtfrt02Va)IFUFtFt0trrtdtft1t2tURU

7、RPIRPdiFdtdiRdt 图2-5 电力二极管的动态过程波形 a) 正向偏置转换为反向偏置 b) 零偏置转换为正向偏置 延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降时间与延迟时间 的比值tf /td,或称恢复系数,用Sr表示b)UFPuiiFuFtfrt02Va)IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt 图2-5 电力二极管的动态过程波形 a) 正向偏置转换为反向偏置 b) 零偏置转换为正向偏置电力二极管的基本特性电力二极管的基本特性2.2电力二极管的主要参数电力二极管

8、的主要参数1. 正向平均电流正向平均电流IF(A V) 额定电流额定电流在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值正向平均电流是按照电流的发热效应来定义的,因此使用时应按有效值相等的原则有效值相等的原则来选取电流定额,并应留有一定的裕量。当用在频率较高的场合时,开关损耗造成的发热往往不能忽略当采用反向漏电流较大的电力二极管时,其断态损耗造成的发热效应也不小 2.32. 正向压降正向压降UF指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降有时参数表中也给出在指定温度下流过某一瞬态正向大电流时器件的最大瞬时正向压降3. 反向重

9、复峰值电压反向重复峰值电压URRM指对电力二极管所能重复施加的反向最高峰值电压通常是其雪崩击穿电压UB的2/3使用时,往往按照电路中电力二极管可能承受的反向最高峰值电压的两倍来选定 电力二极管的主要参数电力二极管的主要参数2.34. 最高工作结最高工作结温温TJM结温结温是指管芯PN结的平均温度,用TJ表示。最高工作结温最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125175C范围之内。5. 反向恢复时间反向恢复时间trrtrr= td+ tf ,关断过程中,电流降到零起到恢复反响阻断能力止的时间。6. 浪涌电流浪涌电流IFSM指电力二极管所能承受最大的连续一个

10、或几个工频周期的过电流。 电力二极管的主要参数电力二极管的主要参数2.3电力二极管的主要类型电力二极管的主要类型在应用时,应根据不同场合的不同要求选择不同类型的电力二极管。性能上的不同是由半导体物理结构和工艺上的差别造成的。1. 普通二极管普通二极管(General Purpose Diode)又称整流二极管(Rectifier Diode)多用于开关频率不高(1kHz以下)的整流电路中其反向恢复时间较长,一般在5 s以上,这在开关频率不高时并不重要。正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上。2.42. 快恢复二极管快恢复二极管(Fast Recovery Diode

11、FRD)电力二极管的主要类型电力二极管的主要类型2.4恢复过程很短特别是反向恢复过程很短(5 s以下)的二极管,也简称快速二极管工艺上多采用了掺金措施有的采用PN结型结构有的采用改进的PiN结构 采用外延型PiN结构的的快恢复外延二极管快恢复外延二极管(Fast Recovery Epitaxial DiodesFRED),其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右),但其反向耐压多在1200V以下 从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到2030ns。 3. 肖特基二极管肖特基二极管 以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier DiodeSBD),简称为肖特基二极管 20世纪80年代以来,由于工艺的发展得以在电力电子电路中广泛应用肖特基二极管的肖特基二极管的弱点 当反向耐压提高时其正向压降也会高得不能满足要求,因此多用于20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论