统计学第八章相关和回归分析ppt课件_第1页
统计学第八章相关和回归分析ppt课件_第2页
统计学第八章相关和回归分析ppt课件_第3页
统计学第八章相关和回归分析ppt课件_第4页
统计学第八章相关和回归分析ppt课件_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-5-61第八章 相关和回归分析第一节 相关的意义和种类第二节 相关图表和相关系数第三节 一元线性回归分析第四节 多元线性回归分析第五节 非线性回归分析2022-5-62 相关和回归分析是研讨事物的相互关系,相关和回归分析是研讨事物的相互关系,测定它们联络的严密程度,提示其变化测定它们联络的严密程度,提示其变化的详细方式和规律性的统计方法,是构的详细方式和规律性的统计方法,是构造各种经济模型、进展构造分析、政策造各种经济模型、进展构造分析、政策评价、预测和控制的重要工具。评价、预测和控制的重要工具。2022-5-63本章学习目的n1.了解相关的意义、主要方式、以及相关分析的根本内容。n

2、2.掌握相关系数的设计原理,以及相关关系显著性检验。n3.回归和相关的区别和联络n4.普通最小二乘法的原理以及回归参数的意义。n5.估计规范误差的分析等。2022-5-64 第一节 相关的意义和种类一、问题的提出一、问题的提出二、相关关系的概念二、相关关系的概念三、相关关系的种类三、相关关系的种类四、相关关系的主要内容四、相关关系的主要内容2022-5-65相关2022-5-66一、相关关系的概念一、相关关系的概念 客观景象之间的数量联络存在着两种不同的类型: 函数关系和相关关系函数关系: 即当一个(或一组)变量每取一个值时,相应的另一个变量必然有一个确定值与之对应 。2022-5-67函数关

3、系1是一一对应确实定关系2设有两个变量 x 和 y ,变量 y 随变量 x 一同变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,那么称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量3各观测点落在一条线上 2022-5-68自变量与因变量自变量与因变量n假设变量之间有因果关系,那么缘由变量就叫作自变量,而受自变量影响的变量就称因变量。自变量通常发生在因变量之前。不是一切先发生的变量都是自变量普通自变量记为X,因变量n 记为Y。2022-5-691 1 某种商品的销售额某种商品的销售额(y)(y)与销售量与销售量(x)(x)之

4、间的之间的关系可表示为关系可表示为 y = p x (p y = p x (p 为单价为单价) )2 2圆的面积圆的面积(S)(S)与半径之间的关系可表示为与半径之间的关系可表示为 S = S = R2 R23 3企业的原资料耗费额企业的原资料耗费额(y)(y)与产量与产量(x1) (x1) 、单位、单位产量耗费产量耗费(x2) (x2) 、原资料价钱、原资料价钱(x3)(x3)之间的关系可之间的关系可表示为表示为y = x1 x2 x3 y = x1 x2 x3 2022-5-610相关关系相关关系correlation analysis:相关关系:变量之间存在有依存关系,但这种关系是不完全

5、确定的随机关系,即当一个(或一组)变量每取一个值时,相应的另一个变量能够有多个不同值与之对应 。2022-5-611因果关系因果关系相关关系相关关系互为因果关系互为因果关系共变关系共变关系随机性依存关系随机性依存关系确定性依存关系确定性依存关系函数关系变量之变量之间关系间关系2022-5-612相关关系1变量间关系不能用函数关系准确表达;2一个变量的取值不能由另一个变量独一确定;3当变量 x 取某个值时,变量 y 的取值能够有几个;4各观测点分布在直线周围。2022-5-613商品的消费量商品的消费量(y)(y)与居民收入与居民收入(x)(x)之间的关系之间的关系商品销售额商品销售额(y)(y

6、)与广告费支出与广告费支出(x)(x)之间的关系之间的关系粮食亩产量粮食亩产量(y)(y)与施肥量与施肥量(x1) (x1) 、降雨量、降雨量(x2) (x2) 、温度、温度(x3)(x3)之间的关系之间的关系收入程度收入程度(y)(y)与受教育程度与受教育程度(x)(x)之间的关系之间的关系父母亲身高父母亲身高(y)(y)与子女身高与子女身高(x)(x)之间的关系之间的关系身高与体重的关系身高与体重的关系2022-5-614n相关关系与函数关系的关系相关关系与函数关系的关系: :在一定的条件下相互转化在一定的条件下相互转化. .n 具有函数关系的变量具有函数关系的变量, ,当存在观测误差和随

7、机要当存在观测误差和随机要素影响时素影响时, ,其函数关系往往以相关的方式表现出来其函数关系往往以相关的方式表现出来. .n 而具有相关关系的变量之间的联络而具有相关关系的变量之间的联络, ,假设我们对它们假设我们对它们有了深化的规律性认识有了深化的规律性认识, ,并且可以把影响因变量变动的并且可以把影响因变量变动的要素全部纳入方程要素全部纳入方程, ,这时相关关系也可转化为函数关系这时相关关系也可转化为函数关系. .另外另外, ,相关关系也具有某种变动规律相关关系也具有某种变动规律, ,所以所以, ,相关关系也相关关系也经常可以用一定的函数方式去近似地描画经常可以用一定的函数方式去近似地描画

8、. .2022-5-615二、 相关关系的种类1.按相关的程度分:完全相关完全相关不完全相关不完全相关 不相关不相关(或零相关或零相关)例:完全相关:在价钱P不变的情况下,销售收入Y与销售量X 的关系; 不相关:股票价钱的高低与气温的高低是不相关的;2022-5-6162.按相关的方向分:正相关正相关负相关负相关正相关:两个变量之间的变化方向一致,都是增长趋正相关:两个变量之间的变化方向一致,都是增长趋 势或下降趋势。势或下降趋势。 例例: 收入与消费的关系收入与消费的关系; 工人的工资随劳动消费率的提高而提高。工人的工资随劳动消费率的提高而提高。负相关:两个变量变化趋势相反,一个下降而另一负

9、相关:两个变量变化趋势相反,一个下降而另一 个上升,或一个上升而另一个下降。个上升,或一个上升而另一个下降。 例例: : 物价与消费的关系物价与消费的关系; ; 商品流转的规模愈大商品流转的规模愈大, ,流通费用程度那么越低。流通费用程度那么越低。2022-5-6173.按相关的方式分:线性相关线性相关非线性相关非线性相关 线性相关线性相关直线相关直线相关:当一个变量每变动一个单位时,:当一个变量每变动一个单位时, 另一个变量按一个大致固定的另一个变量按一个大致固定的 增增( (减减) )量变动。量变动。例例: :人均消费程度与人均收入程度人均消费程度与人均收入程度非线性相关非线性相关曲线相关

10、曲线相关:当一个变量变动时,:当一个变量变动时, 另一另一个变量也相应发生变动,但这种变动是不均等的。个变量也相应发生变动,但这种变动是不均等的。例例: 产品的平均本钱与总产量产品的平均本钱与总产量; 农产量与施肥量农产量与施肥量.2022-5-6184 .按相关的影响要素多少分:单相关单相关复相关复相关偏相关偏相关单相关单相关(一元相关一元相关):只需一个自变量。:只需一个自变量。复相关复相关(多元相关多元相关):有两个及两个以上的自变量。:有两个及两个以上的自变量。如如: 居民的收入与储蓄额居民的收入与储蓄额; 本钱与产量本钱与产量如如: 某种商品的需求与其价钱程度以及收入程度某种商品的需

11、求与其价钱程度以及收入程度 之间的相关关系便是一种复相关。之间的相关关系便是一种复相关。2022-5-619 偏相关: 在某一景象与多种景象相关的场所,假定其他变量不变,专门调查其中两个变量的相关关系称为偏相关。 如: 在假定人们的收入程度不变的条件下,某种商品的需求与其价钱程度的关系就是一种偏相关。2022-5-620 图示2022-5-621三、相关分析的主要内容n根据研讨目的,搜集有关资料n编制相关图表n计算相关系数n建立回归方程n进展统计检验2022-5-622第二节 相关图表和相关系数n一、相关表和相关图n二、简单相关系数2022-5-623 相关分析相关分析: 就是用一个目的来阐明

12、景象就是用一个目的来阐明景象间相互依存关系的亲密程度。广义的相间相互依存关系的亲密程度。广义的相关分析包括相关关系的分析关分析包括相关关系的分析狭义的相狭义的相关分析关分析和回归分析。和回归分析。2022-5-624定性分析定性分析定量分析定量分析相关关系的判别相关关系的判别2022-5-625一、相关表和相关图 相关表和相关图是研讨相关关系的直观工具,在进展详细的定量分析之前, 可以先利用它们对景象之间存在的相关关系的方向、方式、和亲密程度作大致的判别。n简单相关表:将自变量简单相关表:将自变量x的数值按照从小的数值按照从小到大的顺序,并配合因变量到大的顺序,并配合因变量y的数值一一的数值一

13、一对应而平行陈列的表。对应而平行陈列的表。消费支出消费支出y15203040425360657870可支配收可支配收入入x18254560627588929899居民消费和收入的相关表居民消费和收入的相关表单位:百元单位:百元2022-5-627 相关图:又称散点图。将相关图:又称散点图。将x置于横轴上,置于横轴上,y置于置于纵轴上,将纵轴上,将x,y绘于坐标图上。用来反映绘于坐标图上。用来反映两变量之间相关关系的图形。两变量之间相关关系的图形。 例例:2022-5-628二、简单相关系数n一一简单相关系数的概念简单相关系数的概念n 是度量两个变量之间线性相关亲密程度和相关是度量两个变量之间线

14、性相关亲密程度和相关方向的统计目的。方向的统计目的。n 包括简单相关系数、复相关系数、偏相关系数、曲包括简单相关系数、复相关系数、偏相关系数、曲线相关系数线相关系数(相关指数相关指数).n简单相关系数又称皮尔逊简单相关系数又称皮尔逊(1890年年,英国英国)相关系数,或相关系数,或积矩相关系数或动差相关系数。积矩相关系数或动差相关系数。n假设相关系数是根据总体全部数据计算的,称为总体假设相关系数是根据总体全部数据计算的,称为总体n n 相关系数,记为相关系数,记为 .n假设是根据样本数据计算的,那么称为样本相关系数,假设是根据样本数据计算的,那么称为样本相关系数,记为记为 r.样本相关系数是总

15、体相关系数的一致估计量样本相关系数是总体相关系数的一致估计量.n YXXY2022-5-629n 样本简单相关系数的计算公式(积差法)yyxxxySSSyyxxyyxxr22)()()(yxnxyyyxxynyyyxnxxx111222222式中:11.用计算器计算协方差Sxy2022-5-6302222yynxxnyxxynr2222111 ynyxnxyxnxyr或:或:2022-5-631n用计算机计算n选取“工具-“数据分析n选“相关系数n选“确定n输入“输入区域n输入“输出区域n在“分组方式中选“逐列n选“标志位于第一行n确定n出现结果如下:xyx1.0000y0.96971.000

16、02022-5-632 1. r 的取值范围是 -1,1 |r|=1,为完全相关r =1,为完全正相关r =-1,为完全负相关 2. r = 0,不存在线性相关关系 3. -1r0,为负相关 4. 0t(10-2)=2.306,回绝H0,总体人均消费支出与人均可支配收入之间的线性相关关系显著.例:例:n为了简化检验的过程,有人根据t统计量和r的关系,编成,相关系数的显著性检验可直接查表进展。n检验方法:n对于给定的显著性程度n假设IrI r (n-2) ,变量x与y之间有显著的线性相关关系。n假设IrI r (n-2) ,变量x与y之间不存在线性相关关系。前例中:r=0.9878 r0.05

17、(10-2)=0.632 ,所以总体人均消费支出与人均可支配收入之间的线性相关关系显著。2022-5-641 第三节 一元线性回归分析n一、 回归分析概念n二、 回归分析的种类n三、 一元线性回归分析2022-5-642回归方程一词是怎样来的2022-5-643一、 回归分析的概念 是指对具有相关关系的景象,根据其相关关系的详细形状,选择一个适宜的数学模型称为回归方程式,用来近似地表达变量间的平均变化关系的一种统计分析方法。2022-5-644二、回归分析的内容n从一组样本数据出发,确定变量之间的数学关系式。n对这些关系式的可信程度进展各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量

18、的影响显著,哪些不显著。n利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的准确程度。2022-5-645n回归分析和相关分析的区别:n相关分析中,变量 x 变量 y 处于平等的位置;回归分析中,变量 y 称为因变量,处在被解释的位置,x 称为自变量,用于预测因变量的变化.n相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x那么作为研讨时给定的非随机变量。n相关分析主要是描画两个变量之间线性关系的亲密程度;回归分析不仅可以提示变量 x 对变量 y 的影响大小,还可以由回归方程进展预测和控制 2022-

19、5-646相关分析与回归分析的联络n相关分析和回归分析有着亲密的联络,它们不仅具有共同的研讨对象,而且在详细运用时,经常必需相互补充。相关分析需求依托回归分析来阐明景象数量相关的详细方式,而回归分析那么需求依托相关分析来阐明景象数量变化的相关程度。只需当变量之间存在着高度相关时,进展回归分析寻求其相关的详细方式才有意义。n简单说:1、相关分析是回归分析的根底和前提;n2、回归分析是相关分析的深化和继续。2022-5-647三、回归分析的种类1.按自变量的个数分:一元回归一元回归多元回归多元回归2.按回归方程的方式分:线性回归线性回归非线性回归非线性回归本章主要引见一元线性回归。2022-5-6

20、48四、一元线性回归分析一一一元线性回归方程一元线性回归方程当只涉及一个自变量时称为一元回归, 假设因变量 y 与自变量 x 之间为线性关 系时称为一元线性回归。2、对于具有线性关系的两个变量,可以用 一条线性方程来表示它们之间的关系。3、描画因变量 y 如何依赖于自变量 x 和 误差项 的方程称为回归模型。2022-5-649留意:在两个变量之间,必需确定哪个是自变量,哪个是因变量回归方程的主要作用是用自变量来推算因变量。2022-5-650n 回归模型的表达式如下:Y = a + X+ e1、模型中,y 是 x 的线性函数(部分)加上随机误差项2、线性部分反映了由于 x 的变化而引起的 y

21、 的变化, 是Y的数学期望,即对应于X某一取值时Y的平均值:)(XXYE)(2022-5-6513、随机误差项(随机干扰项) 是随机变量A、反映了除 x 和 y 之间的线性关系 之外的随机要素对 y 的影响B、是不能由 x 和 y 之间的线性关系 所解释的变异性随机误差项是Y与E(Y) 的离差:4、 和 称为模型的参数)()(YEYXY2022-5-652总体回归线与随机误差项 XYiY 。 。 。XYE)(2022-5-653二二回归参数的普通最小二乘估计回归参数的普通最小二乘估计(OLS) 根本原理:根本原理: 1、 使因变量的察看值使因变量的察看值 Y与估计值与估计值 之间的之间的 离差

22、平方和到达最小来求得离差平方和到达最小来求得 。即。即cy最小niniCbxaYyYbaQ1212)(),(用最小二乘法拟合的直线来代表x与y之间的 关系与实践数据的误差比其他任何直线都小。2022-5-654回归参数推导过程:0202bxaYxbQbxaYaQ为使Q 到达极小值,那么须有:整理得如下规范方程组:xyxbxayxbna22022-5-655解上述方程组得:xbynxbnyaxxnyxxynb22222211xxxySSxxyyxxxnxyxnxyb其中 可变形为:b解:解:y 473, x 662, y2 26507,x2 51656,xy 36933,n=10由表中数据得:所

23、以:364.01066272.01047372.066251656106624733693310222nxbnyaxxnyxxynb所建立的回归方程为:xy72. 0364. 0回归系数 的含义是:人均可支配收入每添加1元,人均消费支出平均添加0.72元。b2022-5-657相关系数与回归系数的关系yyxxSSbr222211xxxySSxxyyxxxnxyxnxybyyxxxySSSyyxxyyxxr22)()()(2022-5-658(三三)回归方程的显著性检验回归方程的显著性检验1. 回归模型检验的种类回归模型检验的种类 回归模型的检验包括实际意义检回归模型的检验包括实际意义检验、一级

24、检验和二级检验。验、一级检验和二级检验。实际意义实际意义:检验主要涉及参数估计值的检验主要涉及参数估计值的符号和取值区间符号和取值区间.如食品支出的恩格尔如食品支出的恩格尔函数中函数中,b的取值区间应在的取值区间应在0-1之间之间;2022-5-659一级检验又称统计学检验,它是利用统计学中的抽样实际来检验样本回归方程的可靠性,详细又可分为拟合程度评价和显著性检验.一级检验对一切的景象进展回归分析时都必需经过的检验.二级检验又称经济计量学检验,它是对规范线性回归模型的假定条件能否得到满足进展检验,详细包括序列相关检验,异方差性检验等.2022-5-6602.显著性检验包括两方面的内容显著性检验

25、包括两方面的内容: (1)对整个回归方程的显著性检验对整个回归方程的显著性检验-F检验检验 回归方程的显著性检验即对自变量回归方程的显著性检验即对自变量和因变量之间线性关系整体上能否显著和因变量之间线性关系整体上能否显著进展检验。进展检验。(2)对回归系数的显著性检验:-t检验2022-5-661 (1)对整个回归方程的显著性检验对整个回归方程的显著性检验 -即拟合程度的评价即拟合程度的评价 所谓拟合程度,是指样本观测值聚所谓拟合程度,是指样本观测值聚集在样本回归线周围的严密程度。判别集在样本回归线周围的严密程度。判别回归模型拟合程度优劣最常用的数量尺回归模型拟合程度优劣最常用的数量尺度是样本

26、可决系数度是样本可决系数又称断定系数又称断定系数。它是建立在对总离差平方和进展分解的它是建立在对总离差平方和进展分解的根底之上的。根底之上的。2022-5-662分析:因变量 Y的取值是不同的,Y 取值的这种动摇称为变差。变差来源于两个方面:由于自变量 x 的取值不同呵斥的除 x 以外的其他要素(如x对y的非线性影响、丈量误差、随机要素等)的影响对一个详细的观测值来说,变差的大小可以经过该实践观测值与其均值之差 来表示yy2022-5-663估计规范误差估计规范误差Syx可阐明回归方程的代可阐明回归方程的代表程度表程度 实践察看值与回归估计值离差平实践察看值与回归估计值离差平方和的均方根。方和

27、的均方根。 估计规范误差反映了实践察看值估计规范误差反映了实践察看值在回归直线周围的分散情况,是用来阐在回归直线周围的分散情况,是用来阐明回归方程代表性大小的统计目的。也明回归方程代表性大小的统计目的。也阐明了回归直线的拟合程度阐明了回归直线的拟合程度.2022-5-664由一元回归方程由一元回归方程样本资料计算样本资料计算:估计规范误差的计算公式为:22111212nyxbyaynyySniiiniiniiniciyx112knyySniciyxk表示自变量个数2022-5-665)(4215. 62150644.53622)(十吨ncyyyxS例例2022-5-66621564785153

28、01. 022615905.22395039 yxS简化式:简化式:4215.62022-5-667前例1中回归方程估计规范误差为:)(35. 92103693372. 0473)364. 0(2650721112百元nyxbyaySniiiniiniiyx2022-5-668n作为回归模型拟合优度的判别和评价目的,估计规范误差显然不如断定系数,断定系数是无量纲的系数,有确定的取值范围(0-1),便于对不同资料回归模型拟合优度n 进展比较.而估计规范误差那么是有计量单位的,又没有确定的取值范围,不便于对不同资料回归模型拟合优度进展比较.2022-5-669利用回归方程进展预测和估计利用回归方程

29、进展预测和估计n根据自变量 x 的取值估计或预测因变量 y的取值.n当给出的x属于样本内的数据时,计算的yc值称为内插检验或事后预测,当给出的x在样本之外时,计算的yc值称为外推预测或事前预测.n估计或预测的类型n点估计ny 的平均值的点估计ny 的个别值的点估计n区间估计ny 的平均值的置信区间估计ny 的个别值的预测区间估计2022-5-670点估计点估计:2. 点估计值点估计值 y 的平均值的点估计的平均值的点估计 y 的个别值的点估计的个别值的点估计3. 在点估计条件下,平均值的点估计和个别在点估计条件下,平均值的点估计和个别值的的点估计是一样的,但在区间估计中值的的点估计是一样的,但

30、在区间估计中那么不同那么不同对于自变量对于自变量 x 的一个给定值的一个给定值x0 ,根据回归方,根据回归方程得到因变量程得到因变量 y 的一个估计值的一个估计值0 y2022-5-671第三节 多元线性相关与回归分析一、多元线性回归模型一、多元线性回归模型 一个因变量与两个及两个以上自变量之间的回归一个因变量与两个及两个以上自变量之间的回归.描描画因变量画因变量 y 如何依赖于自变量如何依赖于自变量 x1 ,x2 , xp 和和误差项误差项 的方程称为多元线性回归模型的方程称为多元线性回归模型 涉及涉及 p 个自变量的多元线性回归模型可表示为个自变量的多元线性回归模型可表示为x 0 0 ,11, ,pp是参数是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论