精品资料(2021-2022年收藏)中职指数函数及其图像与性质公开课教案_第1页
精品资料(2021-2022年收藏)中职指数函数及其图像与性质公开课教案_第2页
精品资料(2021-2022年收藏)中职指数函数及其图像与性质公开课教案_第3页
精品资料(2021-2022年收藏)中职指数函数及其图像与性质公开课教案_第4页
精品资料(2021-2022年收藏)中职指数函数及其图像与性质公开课教案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§4.2.1指数函数及其图像与性质授课人: 教学目标:(1)知识与能力:1.了解指数函数模型的实际背景;理解指数函数的概念,能根据定义判断一个函数是否为指数函数; 2.理解指数函数的图像和性质,能根据图像归纳出指数函数的性质;3.掌握指数函数性质的简单应用。(2)过程与方法:1.通过探讨指数函数的概念,感知数学概念的严谨性和科学性,培养学生观察、分析、抽象、概括能力;2.引导学生进一步体会数形结合的思想,培养学生的识图能力和分析、归纳、总结的技巧;3.通过学生自己画图提炼函数性质,培养了学生的动手能力、归纳总结等系统的逻辑思维能力和简约直观的思维方法和良好的思维品质。(3)情感态度与

2、价值观:1.通过实例引入,让学生深切感受到生活中处处有数学,激发学习的兴趣和动力;2.学习过程中经历了通过图像探究函数性质的过程,使学生体会到认识事物的特殊性与一般性之间的关系 ;3.通过主动探究、合作学习、相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神;4.通过作图,教师有意识地向学生渗透抽象与具体、联系与转化、特殊与一般、个性与共性等辩证唯物主义的观点和方法,培养学生的自尊、自强、自信、自主等良好的心理潜能、主人翁意识和集体主义精神。教学重点与难点:重点:理解指数函数的概念,掌握指数函数的图象和性质;难点:(1)指数函数的概念中对底数

3、a的规定; (2)用数形结合的方法,从具体到一般的探索、概括指数函数的性质。教学方法:  发现法、探究法、讨论法教学过程:故事引入:一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?”合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;.到了第十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多一点。杰米想:要是合

4、同定两个月,三个月多好!可从第21天起,情况发生了变化。第21天,杰米支出1万多,收入10万元。到第28天,杰米支出134万多,收入10万元。结果杰米在一个月(31天)内得到310万元的同时,共付给韦伯2147483647分,也就是2000多万元!杰米破产了。 这个故事一定会让你吃惊,开始微不足道的数字,两倍两倍的增长,会变得这么巨大!事实的确如此,因为杰米碰到了“指数爆炸”。一种事物如果成倍成倍地增大(如2222。),则它是以指数形式增大,这种增大的速度就像“大爆炸”一样,非常惊人。在科学领域,常常需要研究这一类问题。(存在变数就存在希望,一成不变或许不经意间已被唰出局)创设情境,激发兴趣:

5、实例1:某个细胞第一次分裂,一个分裂为2个;第二次分裂,2个分裂成4个这样下去,问第8次,第10次,第20次,第x次分裂后共有细胞个数y与x的函数关系式_.通过多媒体演示,学生总结每次分裂后细胞的个数:第一次21,第二次是22,第三次是23,第x次是y=2x实例2:庄子。天下篇中写到:“一尺之棰,日取其半,万世不竭”。请写出取x次后,木棰的剩下长度y与x的函数关系式 _ 。 学生观察木棰的剩留长度动画,归纳次数与木棰的剩留长度的关系。回答:第一次木棰的剩留长度是,第二次是,第三次是,第四次是.第x次是y=探求新知,新课讲解:一、指数函数的概念:观察上面两个例子中,分析函数的

6、解析式y=和y=的底数和指数的共同特点,总结出指数函数概念:一般地,函数y=(a>0且a1)叫做指数函数,其中x是自变量,函数的定义域是R。(一)思考以下两个问题:1.为什么规定a>0且a1?若a1,恒为1,没有研究的必要性 若a0,有时会无意义,如,无意义。 若a0,有时会无意义,如在实数范围内函数值不存在 为了避免上述各种情况,所以规定a0且a1。在规定以后,对于任何xR,都有意义.2.什么样的函数是指数函数? (1)函数是指数幂的形式,自变量x在指数的位置; (2)底数a是大于0且不为1的常数;(3)指数幂的形式前系数为1,没有多余项; (二)练

7、习:根据定义,判断下列函数是否是指数函数?1. 2. 3.4. 5. 6. 7. 8. 二、指数函数的图像和性质:作函数图象的过程:列表,描点,连线。x.-3-2-10123.y=.1248.y0y=1y=2x(0,1)y=.8421.xy=1 (0,1)(一)图象特征:1.图象向左右无限延伸; 2.图象在x轴上方,向上无限延伸,向下无限接近于x轴; 3.a2时,从左向右看图象逐渐上升; a时,从左向右看图象逐渐下降;4.图象都经过点(0,1)。 (二)探究: 1.“图象向左右无限延伸”揭示了“函数的定义域为R”; 2.“图象在x轴上方,向上无

8、限延伸,向下无限接近于x轴”揭示了“函数的值域为(0,);3.“a2时,从左向右看图象逐渐上升; a时,从左向右看图象逐渐下降”揭示了“当a1时,指数函数是增函数;当0a1时,指数函数是减函数” 4.“图象都经过点(0,1)”揭示了“当x0时,1”。(三)师生共同完成下列表格:函数y=(a>1)y=(0<a<1)图象定义域R值域(0,+)过定点(0,1)即当x=0时,y=1单调性在R上是增函数在R上是减函数三、知识运用:例1.判断下列函数在R内的单调性:(1) (2) (3)分析:通过学习指数函数性质要判断单调性,只需要观察底数并明确底数a 与1的大小关系就可以了。解:(1)因为函数的底a=4 > 1,所以该函数在R内是增函数;(2)因为 ,所以底a= <1, 所以该函数在R内是减函数;(3)因为,所以底a=1.3>1, 所以该函数在R内是增函数;四、巩固练习:判断下列函数在R内的单调性: 五、课堂小结:1指数函数的定义; 2指数函数的图象与性质; 六、课后作业:作业:教材P81 练习4.2.1 1、2题思考:“帮你发财”理财公司想和你签约,从今天开始每天给你10万元,而你承担如下任务:第一天给公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论