版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元二次方程专题能力培优(含答案)第2章一元二次方程2.1一元二次方程专题一利用一元二次方程的定义确定字母的取值1 .已知(m3)x2Jm2x1是关于x的一元二次方程,则m的取值范围是()A.mw3B.m>3C.m>-2D.m>-2且m32 .已知关于x的方程(m1)xm2/12(m2)x10,问:(1) m取何值时,它是一元二次方程并写出这个方程;(2) m取何值时,它是一元一次方程?专题二利用一元二次方程的项的概念求字母的取值3.关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值.24 .若一兀一次万程(2a4)x(3a6)xa80没有一次项,则
2、a的值为专题三利用一元二次方程的解的概念求字母、代数式5 .已知关于x的方程x2+bx+a=0的一个根是-a(aw0),则a-b值为()A.-1B.0C.1D.26 .若一元二次方程ax2+bx+c=0中,a-b+c=0,则此方程必有一个根为.22a217 .已知实数a是一兀二次方程x2013x+1=0的解,求代数式a22012a1的值.2013知识要点:1 .只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2 .一元二次方程的一般形式是ax2+bx+c=0(aw0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常
3、数项.3 .使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根.温馨提示:1. 一元二次方程概念中一定要注意二次项系数不为0的条件.2. 一元二次方程的根是两个而不再是一个方法技巧:1 .axk+bx+c=0是一元一次方程的情况有两种,需要分类讨论2 .利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领元二次方程专题能力培优(含答案)会.答案:_m301. D解析:,解得-2且m322.解:(1)当mmm201 2,时,它是一元二次方程.解得:m=1.10当m=1时,原方程可化为2x/12-x-1=0;(2)当m2°,或者当m+
4、1+(m-2)wo且吊+1=1时,它是一元一次方程.m10解得:m=-1,m=0.故当m=-1或0时,为一元一次方程.m2103 .解:由题意,得:m10,解得:m=-1.m10.3a60,.4 .a=-2解析:由题意得'解得a=2.2a40.5 .A解析::关于x的方程x2+bx+a=0的一个根是-a(aw0),a2ab+a=0.a(ab+1)=0.aw0,'0-1-b+a=0.a-b=-16 .x=-1解析:比较两个式子ax1+c=0J1JJq-h+r=0会发现:(1)等号右边相同;(2)等号左边最后一项相同;(3)第一个式子x2对应了第二x21个式子中的1,第一个式子中的
5、x对应了第二个式子中的-1.故.解得x=1.x17 .解:.实数a是一元二次方程x22013x+1=0的解,a22013a+1=0.a2+1=2013a,a22013a=1.1-201勿-2。=a2-2012ti-a=a2-2U1为=-1一2013一元二次方程专题能力培优(含答案)2.2一元二次方程的解法专题一利用配方法求字母的取值或者求代数式的极值1 .若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A.-9或11B.-7或8C.-8或9C.-8或92 .如果代数式x2+6x+n?是一个完全平方式,则m=.3 .用配方法证明:无论x为何实数,代数式2x2+4x
6、5的值恒小于零.专题二利用判定一元二次方程根的情况或者判定字母的取值范围4 .已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5 .关于x的方程kx2+3x+2=0有实数卞H,则k的取值范围是()6 .定义:如果一元二次方程ax2+bx+c=0(aw。满足a+b+c=0,那么我们称这个方程为凤凰”方程.已知ax2+bx+c=0(aw。是凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=cB.a=bC.b=cD.a=b=c专题三解绝对值方程和高次方程7
7、 .若方程(x2+y2-5)2=64,则x2+y2=.8 .阅读题例,解答下题:例:解方程x2|x1|1=0.解:(1)当x1>0,即x>l时,x2(x1)1=0,x2x=0.解得:Xi=0(不合题设,舍去),x2=1.(2)当x-K0,即x<1时,x2+(x1)1=0,,x2+x2=0.解得X1=1(不合题设,舍去),X2=2.综上所述,原方程的解是x=1或x=2.依照上例解法,解方程x2+2|x+2|4=0.3/12元二次方程专题能力培优(含答案)专题四一元二次方程、二次三项式因式分解、不等式组之间的微妙联系9 .探究下表中的奥秘,并完成填空:一兀一次方程两个根一次二项式
8、因式分解x2-2jt+1=0,JQ=1蝇(x-1)(z-t)X严1rX浮2(a-1)(a-2)1工尸一>3Cx-34-二01、一2)Cr-2)卡-L3耳-3=0修=fA2=li-3=4«)<A-)10 .请先阅读例题的解答过程,然后再解答:代数第三册在解方程3x(x+2)=5(x+2)时,先将方程变形为3x(x+2)-5(x+2)=0,这个方程左边可以分解成两个一次因式的积,所以方程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中至少有一个等于0;反过来,如果两个因式有一个等于0,它们的积等于0.因此,解方程(x+2)(3x-5)=0,
9、就相当于解方程5x+2=0或3x-5=0,得到原方程的解为xi=-2,x2=-.3a0,a0,根据上面解一元二次方程的过程,王力推测:a.b>0,则有或者请判断王b0b0.5x1力的推测是否正确?若正确,请你求出不等式0的解集,如果不正确,请说明理2x3由.专题五利用根与系数的关系求字母的取值范围及求代数式的值11 .设xi、x2是一元二次方程x2+4x3=0的两个根,2x1(x22+5x2-3)+a=2,则a=.12 .(2012怀化)已知xrx2是一元二次方程a6x22axa0的两个实数根,是否存在实数a,使x+xx2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;求使(
10、x1+1)(x2+1)为负整数的实数a的整数值.13 .(1)教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为xx2,x1+x2=b,ax1X2=根据这一性质,我们可以求出已知方程关于x1、x2的代数式的值.例如:已知x1、x2为方程x2-2x-1=0的两根,则:(1)x1+x2=,x1-x2=,那么x;+x22=(x1+x2)2-2x1-x2=.请你完成以上的填空.(2)阅读材料:已知m2m10,n2n10,且mn1.求mn-1的值.n4/12元二次方程专题能力培优(含答案)解:由n2n10可知n0.,12一.一1又mm10,且mn1,即mn.m11,,山=1.nn(3)
11、根据阅读材料所提供的的方法及(111一20,2nnn1cm,-是方程x2n0.x10的两根.1)的方法完成下题的解答.已知2m23m10,n23n20,且mn1.求m2)的值.n知识要点:1 .解一元二次方程的基本思想一一降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2 .一元二次方程的根的判别式=b-4ac与一元二次方程ax2+bx+c=0(aw0)的根的关系:当4>0时,一元二次方程有两个不相等的实数解;当=0时,一元二次方程有两个相等的实数解;<0时,一元二次方程没有实数解.3.一元二次方程ax2+bx+c=0(aw0)的两根x1、x2与系数a、b
12、、c之间存在着如下关系:“c力匚x1+x2=-区,x1?x2=.温馨提示:1 .x2+6x+nf是一个完全平方式,易误以为m=3.2 .若一元二次方程ax2+bx+c=0(aw0)的两根xi、x2有双层含义:(1)ax12+bx+c=0,axz2+bx2+c=0;(2)xi+x2=xi?X2=1.方法技巧:1 .求二次三项式ax2+bx+c极值的基本步骤:(1)将ax2+bx+c化为a(x+h)2+k;(2)当a>0,k>0时,a(x+h)2+k>k;当a<0,k<0时,a(x+h)2+k<k.2 .若一元二次方程ax2+bx+c=0的两个根为x1.x2,贝
13、Uax2+bx+c=a(x-x1)(x-x2).3 .解绝对值方程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式子与0的大小关系.4 .解高次方程的基本思想是将高次方程将次转化为关于某个式子的一元二次方程求解.5 .利用根与系数求解时,常常用到整体思想.答案:1 .A解析:根据题意知,-(k-1)=±2X5X1,/.k-1=±10,即k-1=10或k-1=-10,得k=11或k=-9.2 .±3解析:据题意得,ni=9,m=±3.3 .证明:2x2+4x-5=-2(x22x)5=2(x2-2x+1)-5+2=-2(x1)2-3.(x1)>
14、0,'I2(x1)W0,2(x1)3v0.,无论x为何实数,代数式2x2+4x-5的值恒小于零.24 .A斛析:=(2c)-4(a+b)(a+b)=4(a+b+c)(c-a-b).5/12元二次方程专题能力培优(含答案)根据三角形三边关系,得c-a-b<0,a+b+c>0.<0.,该方程没有实数根.5 .A解析:当kx2+3x+1=0为一元一次方程方程时,必有实数根,此时k=0;当kx2+3x+1=0为一元二次方程且有实数根时,如果有实数根,则k0_2_324k2.解得099k且kw0.综上所述k.886.A解析::一元二次方程ax2+bx+c=0(aw0)有两个相等
15、的实数根,=b24ac=0,又a+b+c=0,即b=ac,代入b24ac=0得(一ac)2-4ac=0,化简得(a一c)2=0,所以a=c.7.13解析:由题意得x2+y2-5=±8.解得x2+y2=13或者x2+y2=-3(舍去)8.解:当x+2>0,即x>2时,x2+2(x+2)4=0,x2+2x=0.解得Xi=0,x2=-2;当x+2<0,即xv-2时,x22(x+2)-4=0,.x22x8=0.解得xi=4(不合题设,舍去),X2=-2(不合题设,舍去).综上所述,原方程的解是x=0或x=2.9.发现的一般结论为:若一元二次方程ax2+bx+c=a(x-x1
16、)(x-X2).2.ax+bx+c=0的两个根为xi.X2,贝U1口.解析:壬力的推测是正确的.f5K-l>0吐3万。f5x-l<0或I2k-3<0,不等式赛解不等式超(1解不等式期(23-21-511.8解析::XiX2=3,X22+4X23=0,,2Xi(X22+5X23)+a=2转化为2Xi(X22+4X23+x2)+a=2.2x1X2+a=2.,2x(3)+a=2.解得a=8.12.解:(1)根据题意,得=(2a)2-4xa(a6)=24a>0.a>0.又a6w0,/.aw6.由根与系数关系得:Xi+X2=-二a-,XiX2=a.a6a6由一Xi+XiX2
17、=4+X2得xi+X2+4=XiX2./.2a+4=a,解得a=24.a6a6经检验a=24是方程2a-+4=a的解.6/12元二次方程专题能力培优(含答案)(2)原式=Xi+X2+X1X2+1=_2a+a+i=6为负整数,a6a66a-6a为1或2,3,6.解得a=7或8,9,12.13.解:(1)2,1,6.(3)由n2+3n-2=0可知nw0,,1+3:三=0.E31=0.nnnn2一又2m-3m-1=0,且mn*1,.nr;是方程2x2-3x-1=0的两根.1m+=n12,吊+=(m+1)2-2m1=nnn2)2-2(多1342.3一兀二次方程的应用专题一、利用一元二次方程解决面积问题
18、1 .在高度为2.8m的一面墙上,准备开凿一个矩形窗户.现用9.5m长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3m(铝合金条的宽度忽略不计)2 .如图:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?7/12元二次方程专题能力培优(含答案)3 .数学的学习贵在举一反三,触类旁通.仔细观察图形,认真思考,解决下面的问题:(1)在长为am宽为bm的一块草坪上修了一条1m宽的笔直小路(如图(1),则余下草坪的面积可表示为m2;(2)现为了增加美感,
19、设计师把这条小路改为宽恒为1m的弯曲小路(如图(2),则此时余下草坪的面积为m2;(3)聪明的鲁鲁结合上面的问题编写了一道应用题,你能解决吗?相信自己哦!(如图(3),在长为50m,宽为30m的一块草坪上修了一条宽为xm的笔直小路和一条长恒为xm的弯曲小路(如图3),此时余下草坪的面积为1421m2.求小路的宽x.图专题二、利用一元二次方程解决变化率问题4 .据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2012年的利用率只有30%大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2014年的利用率提高到60%求每年的增长率.(取J2=1.4
20、1)5 .某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6 .(2012广元)某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%再下调15%这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?8/12元二次方程专题能力培优(含答案)专题
21、三、利用一元二次方程解决市场经济问题7 .(2012济宁)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?8 .(2012南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售价与销售量有如下关系:若当月仅售出1部汽车,则该部7车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部;月底厂家根据销售量一次性返利给销售公
22、司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四、利用一元二次方程解决生活中的其他问题9 .(1)经过凸n边形(n>3)其中一个顶点的对角线有条.(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.10.如图每个正方形是由边长为1的小正方形组成.9/12元二次方程专题能力培优(含答案)(1
23、)观察图形,请填与下列表格:止方形边长1357n(奇数)红色小止方形个数止方形边长2468n(偶数)红色小止方形个数(2)在边长为n(n>1)的正方形中,设红色小正方形的个数为Pi,白色小正方形的个数为P2,问是否存在偶数n,使P2=5Pi?若存在,请写出n的值;若不存在,请说明理由.知识要点:列方程解决实际问题的常见类型:面积问题,增长率问题、经济问题、疾病传播问题、生活中的其他问题.温馨提示:1 .若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为a(1±x),第二次增长(或降低)后的数量为a(1±x)2.2 .面积(
24、体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据面积(体积)公式列出一元二次方程.3 .列方程解决实际问题时,方程的解必须使实际问题有意义,因此要注意检验结果的合理性.方法技巧:1 .变化率问题中常用a(1±x)n=b,其中a是起始量,b是终止量,n是变出次数,x是变化率.变化率问题用直接开平方法求解简单.2 .解决面积问题常常用到平移的方法,利用平移前后图形面积不变建立等量关系答案:、95052x,、95052x1.解:设高为x米,则宽为9.50.52x米.由题意,得x3.33解得为1.5,x23(舍去,高度
25、为2.8m的一面墙上).当x=1.5时,宽9.50.52x3答:高为1.5米,宽为2米.2.解:设横、竖彩条的宽度分别为,、,、,1(206x)(304x)=(1-39.50.5323.2xcmv3xcm,由题意,得X20M0.整理,得6x2-65x+50=0.10/12元二次方程专题能力培优(含答案)解,得Xi=5,X2=10(不合题意,舍去).,2x=5,3x=5.632答:每个横、竖彩条的宽度分别为5cm,cm.323 .解:(1)a(b1)(或aba);(2)a(b1)(或aba);(3)将笔直的小路平移到草坪的左边,则余下部分的长为(50-x)m,将弯曲的小路的两侧重合,则余下部分的宽为(30-x)m,由题意得:(50-x)(30-x)=1421.解得x1=1,x2=79(舍去).答:小路的宽为1m.4 .解:设我省每年产出的农作物秸杆总量为a,合理利用量的增长率是x,由题意,得30%a(1+x)2=60%a.,x1=0.41,x2=-2.41(不合题意舍去).,.x0.41.答:每年的增长率约为41%5 .解:设每轮感染中平均每一台电脑会感染x台电脑,依题意,得1+x+(1+x)x=81.整理得(1+x)2=81.x1=8,x2=10(舍去).-.(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级物理上册《3.1温度》同步测试题及答案
- 煤矿开采区域地下水污染防治技术路径
- 2024届四川省成都龙泉中学高考化学三模试卷含解析
- 2024高中地理第二章自然环境中的物质运动和能量交换2-1不断变化的地表形态内力作用与地表形态学案湘教版必修1
- 2024高中生物专题2微生物的培养与应用课题3分解纤维素的微生物的分离课堂演练含解析新人教版选修1
- 2024高中语文第三单元因声求气吟咏诗韵自主赏析苏幕遮学案新人教版选修中国古代诗歌散文欣赏
- 2024高考地理一轮复习第四章地表形态的塑造第一讲营造地表形态的力量学案
- 2024高考化学一轮复习第3章自然界及材料家族中的元素第4讲海水中的化学元素学案鲁科版
- 2024高考化学二轮复习示范卷5含解析
- 2024高考地理一轮复习四地理计算专练含解析
- (免费)2023年浙江衢州中考数学试卷及答案(WORD版)
- MT/T 198-1996煤矿用液压凿岩机通用技术条件
- GB/T 14959-1994个人中子剂量计的性能要求与刻度(中子能量小于20MeV)
- 元旦节前安全教育培训-教学课件
- SL 537-2011 水工建筑物与堰槽测流规范
- 质量管理-AQL抽样基础知识培训课件
- 剧本杀·剧本-四人本《暗船》
- 《普通话》教学讲义课件
- 陕西省西安市各县区乡镇行政村村庄村名居民村民委员会明细
- 水利工程管理单位定岗标准(试点)
- 合肥工业大学推免生综合评价加分细则
评论
0/150
提交评论