版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学九年级数学(下下)第三章第三章 圆圆 圆的对称性圆的对称性(2)(2) 定理定理 垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分并且平分 弦所对的两弦所对的两 条弧条弧.OABCDMCDAB,如图如图 CD是直径是直径,AM=BM, AC =BC, AD =BD.条件条件CD为直径为直径CDABCD平分弧平分弧ADBCD平分弦平分弦ABCD平分弧平分弧ACB结论结论复习复习CDAB, AB是是 O的一条弦的一条弦,且且AM=BM. 你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说与同伴说说你的想法和理由说你的想法和理由.n过点过点M作直径作直径CD.On右图是轴对称
2、图形吗右图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?n小明发现图中有小明发现图中有:CDn由由 CD是直径是直径 AM=BM可推得可推得 AC=BC,AD=BD. MAB平分弦(平分弦(不是直径不是直径)的直径垂直于弦)的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.探索规律探索规律讨论讨论(1)过圆心)过圆心 (2)垂直于弦)垂直于弦 (3)平分弦)平分弦 (4)平)平分弦所对优弧分弦所对优弧 (5)平分弦所对的劣弧)平分弦所对的劣弧(3)(1)(2)(4)(5)(2)(3)(1)(4)(5)(1)(4)(3)(2)(5)(1)(5)(3)(4)(2)(1)
3、平分弦(不是直径)的直径垂直于弦,并且)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对)弦的垂直平分线经过圆心,并且平分弦所对的两条弧的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧并且平分弦所对的另一条弧命题(命题(1):平分弦(不是直径)的直径垂):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧直于弦,并且平分弦所对的两条弧已知:已知:CD是直径,是直径,AB是弦,并且是弦,并且CD平分平分AB求证:求证:CDAB,ADBD,ACBC命题(命
4、题(2):弦的垂直平分线经过圆心,并且平分弦所对):弦的垂直平分线经过圆心,并且平分弦所对的两条弧的两条弧已知:已知:AB是弦,是弦,CD平分平分AB,CD AB,求证:,求证:CD是直径,是直径, ADBD,ACBC命题(命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧平分弦所对的另一条弧已知:已知:CD是直径,是直径,AB是弦,并且是弦,并且ADBD (ACBC)求证:)求证:CD平分平分AB,ACBC(ADBD)CD AB .OAEBDCn你可以写出相应的命题吗你可以写出相应的命题吗?n相信自己是最棒的相信自己是最棒
5、的!定理的逆定理定理的逆定理 如图如图,根据垂径定理与推论可知对于一个圆和一条直线来说。根据垂径定理与推论可知对于一个圆和一条直线来说。如果在下列五个条件中如果在下列五个条件中:只要具备其中两个条件只要具备其中两个条件,就可推出其余三个结论就可推出其余三个结论.OABCDM CD是直径是直径, AM=BM, CDAB, AC=BC,AD=BD.注意注意定理及逆定理定理及逆定理OABCDM条件条件结论结论定理及逆定理定理及逆定理垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所的两条弧并且平分弦所的两条弧.平分弦平分弦(不是直径不是直径)的直径垂直于弦的直径垂直于弦,并且平并且平 分弦所对的
6、两条弧分弦所对的两条弧.平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂直平分弦垂直平分弦,并且平分弦所对的并且平分弦所对的另一条弧另一条弧.弦的垂直平分线经过圆心弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧并且平分这条弦所对的两条弧. 垂直于弦并且平分弦所对的一条弧的直线经过圆心垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平并且平分弦和所对的另一条弧分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦垂直于弦,并且平分弦所对的另一条弧并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心平分弦所对的两条弧的直
7、线经过圆心,并且垂直平分弦并且垂直平分弦.赵州石拱桥赵州石拱桥 1300多年前多年前,我国隋朝建造的赵州石拱桥我国隋朝建造的赵州石拱桥(如图如图)的桥拱的桥拱是圆弧形是圆弧形,它的跨度它的跨度(弧所对是弦的长弧所对是弦的长)为为 37.2 m,拱高拱高(弧的中点到弦的距离弧的中点到弦的距离,也叫弓形高也叫弓形高)为为7.23m,求桥拱的求桥拱的半径半径(精确到精确到0.01m).n你是第一你是第一个告诉同个告诉同学们解题学们解题方法和结方法和结果的吗?果的吗?例题例题判断判断(1)垂直于弦的直线平分弦,并且平分弦所对的)垂直于弦的直线平分弦,并且平分弦所对的弧弧.( )(2)弦所对的两弧中点的
8、连线,垂直于弦,并且)弦所对的两弧中点的连线,垂直于弦,并且经过圆心经过圆心.( )(3)圆的不与直径垂直的弦必不被这条直径平)圆的不与直径垂直的弦必不被这条直径平分分.( )(4)平分弦的直径垂直于弦,并且平分弦所对的)平分弦的直径垂直于弦,并且平分弦所对的两条弧两条弧( )(5)圆内两条非直径的弦不能互相平分()圆内两条非直径的弦不能互相平分( )一、判断是非:一、判断是非:(6)平分弦的直径,平分这条弦所对的弧。)平分弦的直径,平分这条弦所对的弧。(7)平分弦的直线,必定过圆心。)平分弦的直线,必定过圆心。(8)一条直线平分弦(这条弦不是直径),那么这)一条直线平分弦(这条弦不是直径),
9、那么这 条直线垂直这条弦。条直线垂直这条弦。ABCDO(1)ABCDO(2)ABCDO(3)(9)弦的垂直平分线一定是圆的直径。)弦的垂直平分线一定是圆的直径。(10)平分弧的直线,平分这条弧所对的)平分弧的直线,平分这条弧所对的 弦。弦。(11)弦垂直于直径,这条直径就被弦平分。)弦垂直于直径,这条直径就被弦平分。ABCO(4)ABCDO(5)ABCDO(6)E挑战自我挑战自我定理的推论定理的推论2 如果圆的两条弦互相平行如果圆的两条弦互相平行,那么这两条弦所平的弧相那么这两条弦所平的弧相等吗等吗? 老师提示老师提示: 这两条弦在圆中位置有两种情况这两条弦在圆中位置有两种情况:OABCD1.
10、两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧垂径定理的推论垂径定理的推论2 圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等.船能过拱桥吗船能过拱桥吗 2 . 如图如图,某地有一圆弧形拱桥某地有一圆弧形拱桥,桥下水面宽为桥下水面宽为7.2米米,拱顶拱顶高出水面高出水面2.4米米.现有一艘宽现有一艘宽3米、船舱顶部为长方形并米、船舱顶部为长方形并高出水面高出水面2米的货船要经过这里米的货船要经过这里,此货船能顺利通过这此货船能顺利通过这座拱桥吗?座拱桥吗? 相信自己能独立相信自己能独立完成解答完成解答.试一试试一试P93挑战自我挑战自我填一填填一填
11、1、判断:、判断: 垂直于弦的直线平分这条弦垂直于弦的直线平分这条弦,并且平分弦所对的两并且平分弦所对的两条弧条弧. ( ) 平分弦所对的一条弧的直径一定平分这条弦所对的平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧另一条弧. ( ) 经过弦的中点的直径一定垂直于弦经过弦的中点的直径一定垂直于弦.( ) 圆的两条弦所夹的弧相等,则这两条弦平行圆的两条弦所夹的弧相等,则这两条弦平行. ( ) 弦的垂直平分线一定平分这条弦所对的弧弦的垂直平分线一定平分这条弦所对的弧. ( )试一试试一试P93挑战自我挑战自我画一画画一画 2.已知:如图已知:如图, O 中中,弦弦ABCD,ABCD,直径直径
12、MNAB,垂足为垂足为E,交弦交弦CD于点于点F.图中相等的线段有图中相等的线段有 : .图中相等的劣弧有图中相等的劣弧有: .FEOMNABCD试一试试一试P93挑战自我挑战自我画一画画一画 4.如图如图,圆圆O与矩形与矩形ABCD交于交于E、F、G、H,EF=10,HG=6,AH=4.求求BE的长的长.ABCD0EFGH课堂小结课堂小结1、圆是轴对称图形,其对称轴是每一条直径所在的直线或、圆是轴对称图形,其对称轴是每一条直径所在的直线或经过圆心的每一条直线。经过圆心的每一条直线。2、垂直于弦的直径平分这条弦,并且平分弦弦所对的两条弧。、垂直于弦的直径平分这条弦,并且平分弦弦所对的两条弧。C
13、D平分弧平分弧ADBCD平分弦平分弦ABCD平分弧平分弧ACBCD过圆心过圆心CDABCDBAO推论(推论(1)(1)平分弦(不是直径)的直径垂直于弦,)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所)弦的垂直平分线经过圆心,并且平分弦所对的两条弧对的两条弧(3)平分弦所对的一条弧的直径,垂直平分)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对和的另一条弧弦,并且平分弦所对和的另一条弧推论(推论(2)圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等小结小结: 解决有关弦的问题,经常是过圆心作解决有关弦的问题,
14、经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO .AOBECDF思考题思考题已知:已知:AB是是 O直径,直径,CD是弦,是弦,AECD,BFCD求证:求证:ECDF1.本节课我们主要学习了本节课我们主要学习了圆的轴对称性圆的轴对称性 和和定理定理定理:垂直于弦的直径平分这条弦,定理:垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧并且平分弦所对的两条弧 2. 定理的证明,是通过定理的证明,是通过“实验实验观察观察猜想猜想证明证明”实现的,体现了实践的观点、运动变化的观点和先猜想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污水处理中的水资源保护与管理考核试卷
- 公共设施管理的建筑设计与工程管理考核试卷
- 塑料制品的噪声和振动控制技术考核试卷
- 炼铁过程中的环保标志使用管理考核试卷
- 光学仪器在历史学研究中的应用考核试卷
- 生产安全事故隐患治理与应急管理考核试卷
- 水利工程在城市社会心理健康和公共安全中的支撑作用考核试卷
- 机械生产安全知识课件考核试卷
- 新高考历史三轮冲刺过关练习专题17 综合冲刺专练(15+4模式)(解析版)
- DB11∕T 1809-2020 实验动物 微生物检测
- 广西南宁市第十四中学2023-2024学年七年级上学期期中地理试题
- 2024-2030年中国应急产业市场发展分析及竞争形势与投资机会研究报告
- 2024年中国电动鼻毛器市场调查研究报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- 缺乳(乳汁淤积)产妇的中医护理
- 《理解与尊重》主题班会
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 2024年上半年软考信息系统项目管理师真题
- 金华市金投集团有限公司招聘笔试题库2024
评论
0/150
提交评论