高考数学北师大版(通用,理)总复习讲义 9.8 曲线与方程_第1页
高考数学北师大版(通用,理)总复习讲义 9.8 曲线与方程_第2页
高考数学北师大版(通用,理)总复习讲义 9.8 曲线与方程_第3页
高考数学北师大版(通用,理)总复习讲义 9.8 曲线与方程_第4页
高考数学北师大版(通用,理)总复习讲义 9.8 曲线与方程_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§9.8曲线与方程1 曲线与方程一般地,在平面直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都在曲线上那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线2 求动点的轨迹方程的一般步骤(1)建系建立适当的坐标系(2)设点设轨迹上的任一点P(x,y)(3)列式列出动点P所满足的关系式(4)代换依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简(5)证明证明所求方程即为符合条件的动点轨迹方程3 两曲线的交点(1)由曲线方程的定

2、义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题1 判断下面结论是否正确(请在括号中打“”或“×”)(1)f(x0,y0)0是点P(x0,y0)在曲线f(x,y)0上的充要条件()(2)方程x2xyx的曲线是一个点和一条直线(×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2y2.(×)(4)方程y与xy2表示

3、同一曲线(×)2 方程(x2y24)0的曲线形状是()答案C解析由题意可得xy10或它表示直线xy10和圆x2y240在直线xy10右上方的部分3 已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy50答案D解析由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30得2xy50.4 已知点A(2,0)、B(3,0),动点P(x,y)满足·x26,则点P的轨迹方程是_答案y2x解析(3x,y),(2x,y),·(3x)(2x

4、)y2x2x6y2x26,y2x.5 已知两定点A(2,0)、B(1,0),如果动点P满足|PA|2|PB|,则点P的轨迹所包围的图形的面积为_答案4解析设P(x,y),由|PA|2|PB|,得2,3x23y212x0,即x2y24x0.P的轨迹为以(2,0)为圆心,半径为2的圆即轨迹所包围的面积等于4.题型一定义法求轨迹方程例1已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|4.动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线思维启迪利用两圆内、外切的充要条件找出点M满足的几何条件,结合双曲线的定义求解解如图所示,以O1O2的中

5、点O为原点,O1O2所在直线为x轴建立平面直角坐标系由|O1O2|4,得O1(2,0)、O2(2,0)设动圆M的半径为r,则由动圆M与圆O1内切,有|MO1|r1;由动圆M与圆O2外切,有|MO2|r2.|MO2|MO1|3.点M的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支a,c2,b2c2a2.点M的轨迹方程为1 (x)思维升华求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量已知点F,直线l:x,点B是l上的动点若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A双曲线 B椭圆C

6、圆 D抛物线答案D解析由已知得,|MF|MB|.由抛物线定义知,点M的轨迹是以F为焦点,l为准线的抛物线题型二相关点法求轨迹方程例2设直线xy4a与抛物线y24ax交于两点A,B(a为定值),C为抛物线上任意一点,求ABC的重心的轨迹方程思维启迪设ABC的重心坐标为G(x,y),利用重心坐标公式建立x,y与ABC的顶点C的关系,再将点C的坐标(用x,y表示)代入抛物线方程即得所求解设ABC的重心为G(x,y),点C的坐标为C(x0,y0),A(x1,y1),B(x2,y2)由方程组:消去y并整理得:x212ax16a20.x1x212a,y1y2(x14a)(x24a)(x1x2)8a4a.由

7、于G(x,y)为ABC的重心,又点C(x0,y0)在抛物线上,将点C的坐标代入抛物线的方程得:(3y4a)24a(3x12a),即(y)2(x4a)又点C与A,B不重合,x(6±2)a,ABC的重心的轨迹方程为(y)2(x4a)(x(6±2)a)思维升华“相关点法”的基本步骤:(1)设点:设被动点坐标为(x,y),主动点坐标为(x1,y1);(2)求关系式:求出两个动点坐标之间的关系式(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程设F(1,0),M点在x轴上,P点在y轴上,且2,当点P在y轴上运动时,求点N的轨迹方程解设M(x0,0),P(0,y0),

8、N(x,y),(x0,y0),(1,y0),(x0,y0)·(1,y0)0,x0y0.由2得(xx0,y)2(x0,y0),即.x0,即y24x.故所求的点N的轨迹方程是y24x.题型三直接法求轨迹方程例3(2013·陕西)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是PBQ的角平分线,证明:直线l过定点思维启迪(1)利用曲线的求法求解轨迹方程,但要注意结合图形寻求等量关系;(2)设出直线方程,结合直线与圆锥曲线的位置关系转化为方程的根与系数的关

9、系求解,要特别注意判别式与位置关系的联系(1)解如图,设动圆圆心为O1(x,y),由题意,得|O1A|O1M|,当O1不在y轴上时,过O1作O1HMN交MN于H,则H是MN的中点,|O1M|,又|O1A|,化简得y28x(x0)又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y28x,动圆圆心的轨迹C的方程为y28x.(2)证明由题意,设直线l的方程为ykxb(k0),P(x1,y1),Q(x2,y2),将ykxb代入y28x中,得k2x2(2bk8)xb20.其中32kb64>0.由根与系数的关系得,x1x2,x1x2,因为x轴是PBQ的角平分线,所以,即y1(x2

10、1)y2(x11)0,(kx1b)(x21)(kx2b)(x11)0,2kx1x2(bk)(x1x2)2b0将,代入得2kb2(kb)(82bk)2k2b0,kb,此时>0,直线l的方程为yk(x1),即直线l过定点(1,0)思维升华直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略如果给出了直角坐标系则可省去建系这一步求出曲线的方程后还需注意检验方程的纯粹性和完备性如图所示,过点P(2,4)作互相垂直的直线l1,l2,若l1交x轴于A,l2交y轴于B,求线段AB中点M的轨迹

11、方程解设点M的坐标为(x,y),M是线段AB的中点,A点的坐标为(2x,0),B点的坐标为(0,2y)(2x2,4),(2,2y4)由已知·0,2(2x2)4(2y4)0,即x2y50.线段AB中点M的轨迹方程为x2y50.分类讨论思想在曲线与方程中的应用典例:(12分)已知抛物线y22px经过点M(2,2),椭圆1的右焦点恰为抛物线的焦点,且椭圆的离心率为.(1)求抛物线与椭圆的方程;(2)若P为椭圆上一个动点,Q为过点P且垂直于x轴的直线上的一点,(0),试求Q的轨迹思维启迪由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,分类标准的确立有两点:一是二次项系数分别为0

12、时的参数值,二是二次项系数相等时的参数值,然后确定分类标准进行讨论,讨论时注意表述准确规范解答解(1)因为抛物线y22px经过点M(2,2),所以(2)24p,解得p2.2分所以抛物线的方程为y24x,其焦点为F(1,0),即椭圆的右焦点为F(1,0),得c1.又椭圆的离心率为,所以a2,可得b2413,故椭圆的方程为1.6分(2)设Q(x,y),其中x2,2,设P(x,y0),因为P为椭圆上一点,所以1,解得y3x2.由可得2,故2.得(2)x22y23,x2,29分当2,即时,得y212,点Q的轨迹方程为y±2,x2,2,此轨迹是两条平行于x轴的线段;当2<,即0<&

13、lt;时,得到1,此轨迹表示实轴在y轴上的双曲线满足x2,2的部分;11分当2>,即>时,得到1,此轨迹表示长轴在x轴上的椭圆满足x2,2的部分12分温馨提醒此题求轨迹既有直接法,又有相关点法求出轨迹方程后,容易忽略x的范围,导致轨迹图形出错备考建议:(1)区分求轨迹方程与求轨迹的问题(2)对常见的曲线特征要熟悉掌握(3)除此之外,正确进行化简与计算是必须具备的基本能力.方法与技巧求轨迹的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量(如距离与角)的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系转化为x、y的等式就得到曲线的轨迹方程(2)待定系数法:

14、已知所求曲线的类型,求曲线方程先根据条件设出所求曲线的方程,再由条件确定其待定系数(3)定义法:其动点的轨迹符合某一基本轨迹(如直线或圆锥曲线)的定义,则可根据定义采用设方程,求方程系数得到动点的轨迹方程(4)代入法(相关点法):当所求动点M是随着另一动点P(称之为相关点)而运动如果相关点P所满足某一曲线方程,这时我们可以用动点坐标表示相关点坐标,再把相关点代入曲线方程,就把相关点所满足的方程转化为动点的轨迹方程,这种求轨迹的方法叫作相关点法或代入法失误与防范1求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意

15、义2求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等A组专项基础训练(时间:40分钟)一、选择题1 已知命题“曲线C上的点的坐标是方程f(x,y)0的解”是正确的,则下列命题中正确的是()A满足方程f(x,y)0的点都在曲线C上B方程f(x,y)0是曲线C的方程C方程f(x,y)0所表示的曲线不一定是CD以上说法都正确答案C解析曲线C可能只是方程f(x,y)0所表示的曲线上的某一小段,因此只有C正确2 设圆C与圆x2(y3)21外切,与直线y0相切,则C的圆心轨迹为()A抛物线 B双曲线C椭圆 D圆答案A解析设圆C的半径为r,则圆心C到直线y

16、0的距离为r.由两圆外切可得,圆心C到点(0,3)的距离为r1,也就是说,圆心C到点(0,3)的距离比到直线y0的距离大1,故点C到点(0,3)的距离和它到直线y1的距离相等,符合抛物线的特征,故点C的轨迹为抛物线3 设点A为圆(x1)2y21上的动点,PA是圆的切线,且|PA|1,则P点的轨迹方程为()Ay22xB(x1)2y24Cy22xD(x1)2y22答案D解析由题意知P到圆心(1,0)的距离为,P的轨迹方程为(x1)2y22.4 ABC的顶点A(5,0),B(5,0),ABC的内切圆圆心在直线x3上,则顶点C的轨迹方程是()A.1B.1C.1 (x>3)D.1 (x>4)

17、答案C解析如图,|AD|AE|8,|BF|BE|2,|CD|CF|,所以|CA|CB|826.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为1 (x>3)5 有一动圆P恒过定点F(a,0)(a>0)且与y轴相交于点A、B,若ABP为正三角形,则点P的轨迹为()A直线 B圆 C椭圆 D双曲线答案D解析设P(x,y),动圆P的半径为R,由于ABP为正三角形,P到y轴的距离dR,即|x|R.而R|PF|,|x|·.整理得(x3a)23y212a2,即1.点P的轨迹为双曲线二、填空题6 设P是圆x2y2100上的动点,点A(8,0),线段AP的垂直平分

18、线交半径OP于M点,则点M的轨迹为_答案椭圆解析如图,设M(x,y),由于l是AP的垂直平分线,于是|AM|PM|,又由于10|OP|OM|MP|OM|MA|,即|OM|MA|10,也就是说,动点M到O(0,0)及A(8,0 )的距离之和是10,故动点M的轨迹是以O(0,0)、A(8,0)为焦点,中心在(4,0),长半轴长是5的椭圆7 已知ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|3,则顶点A的轨迹方程为_答案(x10)2y236(y0)解析设A(x,y),则D(,),|CD| 3,化简得(x10)2y236,由于A、B、C三点构成三角形,A不能落在x轴上,即y0.8 P

19、是椭圆1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,则动点Q的轨迹方程是_答案1解析由于,又22,设Q(x,y),则(,),即P点坐标为(,),又P在椭圆上,则有1上,即1.三、解答题9 已知曲线E:ax2by21(a>0,b>0),经过点M(,0)的直线l与曲线E交于点A,B,且2.若点B的坐标为(0,2),求曲线E的方程解设A(x0,y0),B(0,2),M(,0),故(,2),(x0,y0)由于2,(,2)2(x0,y0)x0,y01,即A(,1)A,B都在曲线E上,解得.曲线E的方程为x21.10已知点P是圆O:x2y29上的任意一点,过P作PD垂直x轴于D,动点

20、Q满足.(1)求动点Q的轨迹方程;(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的点M、N,使()(O是坐标原点)若存在,求出直线MN的方程;若不存在,请说明理由解(1)设P(x0,y0),Q(x,y),依题意,则点D的坐标为D(x0,0),(xx0,y),(0,y0),又,即.P在圆O上,故xy9,1.点Q的轨迹方程为1.(2)存在假设椭圆1上存在两个不重合的点M(x1,y1),N(x2,y2)满足(),则E(1,1)是线段MN的中点,且有,即.又M(x1,y1),N(x2,y2)在椭圆1上,两式相减,得0.kMN,直线MN的方程为4x9y130.椭圆上存在点M、N满足(),此

21、时直线MN的方程为4x9y130.B组专项能力提升(时间:30分钟)1 已知定点P(x0,y0)不在直线l:f(x,y)0上,则方程f(x,y)f(x0,y0)0表示一条()A过点P且平行于l的直线B过点P且垂直于l的直线C不过点P但平行于l的直线D不过点P但垂直于l的直线答案A解析由题意知f(x0,y0)0,又f(x0,y0)f(x0,y0)0,直线f(x,y)0与直线f(x,y)f(x0,y0)0平行,且点P在直线f(x,y)f(x0,y0)0上2 平面直角坐标系中,已知两点A(3,1),B(1,3),若点C满足12(O为原点),其中1,2R,且121,则点C的轨迹是()A直线 B椭圆C圆

22、 D双曲线答案A解析设C(x,y),则(x,y),(3,1),(1,3),12,又121,x2y50,表示一条直线3 点P是以F1、F2为焦点的椭圆上一点,过焦点作F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()A圆 B椭圆 C双曲线 D抛物线答案A解析如图,延长F2M交F1P延长线于N.|PF2|PN|,|F1N|2a.连接OM,则在NF1F2中,OM为中位线,则|OM|F1N|a.M的轨迹是圆4 已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是_答案x2y24 (x±2)解析设P(x,y),因为MPN为直角三角形,|MP|2|NP|2|MN|2,(x2)2y2(x2)2y216,整理得,x2y24.M,N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论