版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、考必考问题4导数的简单应用及定积分1(2011全国)曲线ye2x1在点(0,2)处的切线与直线y0和yx围成的三角形的面积为()A. B. C. D1答案: Ay2e2x,曲线在点(0,2)处的切线斜率k2,切线方程为y2x2,该直线与直线y0和yx围成的三角形如图所示,其中直线y2x2与yx的交点A,所以三角形面积S1,故选A.2(2012广东)曲线yx3x3在点(1,3)处的切线方程为_解析曲线方程为yx3x3,则y3x21,又易知点(1,3)在曲线上,有y|x12,即在点(1,3)处的切线方程的斜率为2,所以切线方程为y32(x1),即2xy10.答案2xy103(2012陕西)设函数f
2、(x)D是由x轴和曲线yf(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则zx2y在D上的最大值为_解析当x0时,求导得f(x),所以曲线在点(1,0)处的切线的斜率k1,切线方程为yx1,画图可知区域D为三角形,三个顶点的坐标分别为,(0,1),(1,0),平移直线x2y0,可知在点(0,1)处z取得最大值2.答案24(2012江西)计算定积分1(x2sin x)dx_.解析1(x2sin x)dx.答案1利用导数的几何意义求曲线的切线方程;考查定积分的性质及几何意义2考查利用导数的有关知识研究函数的单调性、极值和最值,进而解(证)不等式3用导数解决日常生活中的一些实际问题,以及与其
3、他知识相结合,考查常见的数学思想方法首先要理解导数的工具性作用;其次要弄清函数单调性与导数符号之间的关系,掌握求函数极值、最值的方法步骤,对于已知函数单调性或单调区间,求参数的取值范围问题,一般先利用导数将其转化为不等式在某个区间上的恒成立问题,再利用分离参数法求解.必备知识导数的几何意义(1)函数yf(x)在xx0处的导数f(x0)就是曲线yf(x)在点(x0,f(x0)处的切线的斜率,即kf(x0)(2)曲线yf(x)在点(x0,f(x0)处的切线方程为yf(x0)f(x0)(xx0)(3)导数的物理意义:s(t)v(t),v(t)a(t)基本初等函数的导数公式和运算法则(1)基本初等函数
4、的导数公式原函数导函数f(x)cf(x)0f(x)xn(nR)f(x)nxn1f(x)sin xf(x)cos xf(x)cos xf(x)sin xf(x)ax(a0且a1)f(x)axln af(x)exf(x)exf(x)logax(a0且a1)f(x)f(x)ln xf(x)(2)导数的四则运算法则u(x)v(x)u(x)v(x);u(x)v(x)u(x)v(x)u(x)v(x);(v(x)0)(3)复合函数求导复合函数yf(g(x)的导数和yf(u),ug(x)的导数之间的关系为yxf(u)g(x)利用导数研究函数单调性的一般步骤(1)确定函数的定义域;(2)求导数f(x);(3)若
5、求单调区间(或证明单调性),只需在函数yf(x)的定义域内解(或证明)不等式f(x)0或f(x)0;若已知yf(x)的单调性,则转化为不等式f(x)0或f(x)0在单调区间上恒成立问题求解求可导函数极值的步骤(1)求f(x);(2)求f(x)0的根;(3)判定根两侧导数的符号;(4)下结论求函数f(x)在区间a,b上的最大值与最小值的步骤(1)求f(x);(2)求f(x)0的根(注意取舍);(3)求出各极值及区间端点处的函数值;(4)比较其大小,得结论(最大的就是最大值,最小的就是最小值)必备方法1利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义
6、域;(4)在定义域内求极值、最值;(5)下结论2定积分在几何中的应用被积函数为yf(x),由曲线yf(x)与直线xa,xb(ab)和y0所围成的曲边梯形的面积为S.(1)当f(x)0时,S f(x)dx;(2)当f(x)0时,S f(x)dx;(3)当xa,c时,f(x)0;当xc,b时,f(x)0,则S f(x)dx f(x)dx.常考查:根据曲线方程,求其在某点处的切线方程;根据曲线的切线方程求曲线方程中的某一参数可能出现在导数解答题的第一问,较基础【例1】 (2011新课标全国)已知函数f(x),曲线yf(x)在点(1,f(1)处的切线方程为x2y30,求a、b的值审题视点 听课记录审题
7、视点 求f(x),由可求解f(x),由于直线x2y30的斜率为,且过点(1,1),故即解得a1,b1. 函数切线的相关问题的解决,抓住两个关键点:其一,切点是交点;其二,在切点处的导数是切线的斜率因此,解决此类问题,一般要设出切点,建立关系方程(组)其三,求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上;在点P处的切线,点P是切点【突破训练1】 直线y2xb是曲线yln x(x0)的一条切线,则实数b_.解析切线的斜率是2,根据导数的几何意义可以求出切点的横坐标,进而求出切点的坐标,切点在切线上,代入即可求出b的值y,令2得
8、,x,故切点为,代入直线方程,得ln 2b,所以bln 21.答案ln 21常考查:利用导数研究含参函数的单调性问题;由函数的单调性求参数的范围尤其是含参函数单调性的研究成为高考命题的热点,主要考查学生的分类讨论思想,试题有一定难度【例2】 (2012合肥一模)已知函数f(x)x(aR),g(x)ln x求函数F(x)f(x)g(x)的单调区间审题视点 听课记录审题视点 确定定义域求导对a进行分类讨论确定f(x)的单调性下结论解函数F(x)f(x)g(x)xln x的定义域为(0,)所以f(x)1.当14a0,即a时,得x2xa0,则f(x)0.所以函数F(x)在(0,)上单调递增当14a0,
9、即a时,令f(x)0,得x2xa0,解得x10,x2.(1)若a0,则x20.因为x(0,),所以f(x)0,所以函数F(x)在(0,)上单调递增(2)若a0,则x时,f(x)0;x,时,f(x)0.所以函数F(x)在区间上单调递减,在区间上单调递增综上所述,当a0时,函数F(x)的单调递增区间为(0,);当a0时,函数F(x)的单调递减区间为,单调递增区间为. 讨论函数的单调性其实就是讨论不等式的解集的情况大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应
10、方程的判别式进行分类讨论讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制【突破训练2】 (2012安徽)设函数f(x)aexb(a0)(1)求f(x)在0,)内的最小值;(2)设曲线yf(x)在点(2,f(2)处的切线方程为yx,求a,b的值解(1)f(x)aex,当f(x)0,即xln a时,f(x)在(ln a,)上递增;当f(x)0,即xln a时,f(x)在(,ln a)上递减当0a1时,ln a0,f(x)在(0,ln a)上递减,在(ln a,)上递增,从而f(x)在0,)内的最小值为f(ln a)2b;当a1时,ln a0,f(x)在0,)上递增,从而f(x)
11、在0,)内的最小值为f(0)ab.(2)依题意f(2)ae2,解得ae22或ae2(舍去)所以a,代入原函数可得2b3,即b.故a,b.此类问题的命题背景很宽泛,涉及到的知识点多,综合性强,常考查:直接求极值或最值;利用极(最)值求参数的值或范围常与函数的单调性、方程、不等式及实际应用问题综合,形成知识的交汇问题【例3】 已知函数f(x)x3mx2nx2的图象过点(1,6),且函数g(x)f(x)6x的图象关于y轴对称(1)求m,n的值及函数yf(x)的单调区间;(2)若a0,求函数yf(x)在区间(a1,a1)内的极值审题视点 听课记录审题视点 (1)根据f(x)、g(x)的函数图象的性质,
12、列出关于m、n的方程,求出m、n的值(2)分类讨论解(1)由函数f(x)的图象过点(1,6),得mn3.由f(x)x3mx2nx2,得f(x)3x22mxn,则g(x)f(x)6x3x2(2m6)xn.而g(x)的图象关于y轴对称,所以0,所以m3.代入得n0.于是f(x)3x26x3x(x2)由f(x)0得x2或x0,故f(x)的单调递增区间是(,0)和(2,);由f(x)0,得0x2,故f(x)的单调递减区间是(0,2)(2)由(1)得f(x)3x(x2),令f(x)0得x0或x2.当x变化时,f(x)、f(x)的变化情况如下表:x(,0)0(0,2)2(2,)f(x)00f(x)极大值极
13、小值由此可得:当0a1时,f(x)在(a1,a1)内有极大值f(0)2,无极小值;当a1时,f(x)在(a1,a1)内无极值;当1a3时,f(x)在(a1,a1)内有极小值f(2)6,无极大值;当a3时,f(x)在(a1,a1)内无极值综上得,当0a1时,f(x)有极大值2,无极小值;当1a3时,f(x)有极小值6,无极大值;当a1或a3时,f(x)无极值 (1)求单调递增区间,转化为求不等式f(x)0(不恒为0)的解集即可,已知f(x)在M上递增f(x)0在M上恒成立,注意区别(2)研究函数的单调性后可画出示意图讨论区间与0,2的位置关系,画图截取观察即可【突破训练3】 (2012北京)已知
14、函数f(x)ax21(a0),g(x)x3bx.(1)若曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a24b时,求函数f(x)g(x)的单调区间,并求其在区间(,1上的最大值解(1)f(x)2ax,g(x)3x2b.因为曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线,所以f(1)g(1),且f(1)g(1)即a11b,且2a3b.解得a3,b3.(2)记h(x)f(x)g(x)当ba2时,h(x)x3ax2a2x1,h(x)3x22axa2.令h(x)0,得x1,x2.a0时,h(x)与h(x)的变化情况如下:xh(x)00h(
15、x)所以函数h(x)的单调递增区间为和;单调递减区间为.当1,即0a2时,函数h(x)在区间(,1上单调递增,h(x)在区间(,1上的最大值为h(1)aa2.当1,且1,即2a6时,函数h(x)在区间内单调递增,在区间上单调递减,h(x)在区间(,1上的最大值为h1.当1,即a6时,函数h(x)在区间内单调递增,在区间内单调递减,在区间上单调递增,又因hh(1)1aa2(a2)20,所以h(x)在区间(,1上的最大值为h1.定积分及其应用是新课标中的新增内容,常考查:依据定积分的基本运算求解简单的定积分;根据定积分的几何意义和性质求曲边梯形面积关键在于准确找出被积函数的原函数,利用微积分基本定
16、理求解各地考纲对定积分的要求不高学习时以掌握基础题型为主【例4】 (2011新课标全国)由曲线y,直线yx2及y轴所围成的图形的面积为()A. B4 C. D6审题视点 听课记录审题视点 借助封闭图形确定积分上、下限及被积函数C由y及yx2可得x4,所以由y、yx2及y轴所围成的封闭图形面积为(x2)dx. 求定积分的一些技巧:(1)对被积函数要先化简,把被积函数变为幂函数、指数函数、正弦、余弦函数与常数的和或差,再求定积分;(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分,再求和;(3)对含有绝对值符号的被积函数,先要去掉绝对值符号再求定积分【突破训练4】 若dx3ln 2
17、,则a的值为()A6 B4 C3 D2答案:Da2ln a13ln 2,a2.导数法求最值中的分类讨论由参数的变化引起的分类讨论对于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法【示例】 (2012天津)已知函数f(x)x3x2axa,xR,其中a0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围;(3)当a1时,设函数f(x)在区间t,t3上的最大值为M(t),最小值为m(t),记g(t)M(t)m(t),求函数g(t)在区间3,1上的最小值满分解答(1)f(x
18、)x2(1a)xa(x1)(xa)由f(x)0,得x11,x2a0.当x变化时f(x),f(x)的变化情况如下表:x(,1)1(1,a)a(a,)f(x)00f(x)极大值极小值故函数f(x)的单调递增区间是(,1),(a,);单调递减区间是(1,a)(5分)(2)由(1)知f(x)在区间(2,1)内单调递增,在区间(1,0)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点当且仅当解得0a.所以a的取值范围是.(8分)(3)a1时,f(x)x3x1.由(1)知f(x)在3,1上单调递增,在1,1上单调递减,在1,2上单调递增当t3,2时,t30,1,1t,t3,f(x)在t,1上单调递增,在1,t3上单调递减因此f(x)在t,t3上的最大值M(t)f(1),而最小值m(t)为f(t)与f(t3)中的较小者由f(t3)f(t)3(t1)(t2)知,当t3,2时,f(t)f(t3),故m(t)f(t),所以g(t)f(1)f(t)而f(t)在3,2上单调递增,因此f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学张家界学院《思想道德修养与法律基础》2021-2022学年第一学期期末试卷
- 脑病科护理安全
- 言语治疗呼吸系统
- 皮肤科护理论文
- 二零二四年度智能照明系统合同3篇
- 招商员工入职培训
- 英语探究型活动设计
- 二零二四年度婚姻登记处常用离婚协议参考样式3篇
- 2024年度建设合同:城市供水管道建设合同2篇
- 人音版音乐七年级上册《溜冰圆舞曲》课件
- 科研成果转化协议书
- 2024年度电商企业品牌合作合同5篇
- 企业培训需求
- 湖北省“荆、荆、襄、宜四地七校考试联盟”2024-2025学年高二上学期期中联考英语试卷 含解析
- 山区道路沥青施工方案
- 北京市海淀区2024-2025学年高三第一学期期中练习语文试卷含答案
- 2024年广东佛山三水区乐平镇人民政府政府雇员招聘9人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年山西省文化旅游投资控股集团限公司校园招聘120人高频难、易错点500题模拟试题附带答案详解
- 第二单元《空气》-2024-2025学年三年级上册科学单元测试卷(教科版)
- 突发事件及自救互救学习通超星期末考试答案章节答案2024年
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务四)试题及答案
评论
0/150
提交评论