




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和:性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有, ,.2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或.前项和:(要注意!)性质:是等比数
2、列(1)若,则(2)仍为等比数列,公比为.注意:由求时应注意什么?时,;时,.3求数列通项公式的常用方法(1)求差(商)法 如:数列,求解: 时, 时, 得:,练习数列满足,求注意到,代入得;又,是等比数列,时,(2)叠乘法 如:数列中,求解: ,又,.(3)迭加法 由,求,用迭加法时,两边相加得练习数列中,求 ()(4)等比型递推公式 (待定系数法)(为常数,)可转化为等比数列,设令,是首项为为公比的等比数列,(5)倒数法 如:,求由已知得:,为等差数列,公差为,(附:公式法、利用、累加法、累乘法、构造等差或等比或、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n项和的常
3、用方法(1) 裂项法 把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由练习求和:(2)错位相减法 若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比. 如: 时,时,(3)倒序相加法 把数列的各项顺序倒写,再与原来顺序的数列相加. 相加练习已知,则 由原式 数列不等式是高考的一个考点,这类问题是把数列知识与不等式的内容整合在一起,形成了证明不等式,求不等式中的参数范围,求数列中的最大项,最小项,比较数列中的项的大小关系,研究数列的单调性等不同解题方向的问题,而数列的条件的给出是多种多样的,可以是已知的等差数列,等比数列,也可以
4、是一个递推公式,或者是一个函数解析式。数列不等式的证明和解决,要调动证明不等式的各种手段,如比较法,放缩法,函数法,反证法,均值不等式法,数学归纳法,分析法等等,因此,这类题目从已知条件给出的信息,求解目标需求的信息中,可寻求的解题过程所用的方法是相当丰富的,并且对于考查逻辑推理,演绎证明,运算求解,归纳抽象等理性思维能力以及数学联结能力都是很好的素材。 放缩法是要证明数列不等式的一种常见方法,如当证明A<B成立不容易,而借助一个或多个中间变量通过适当的放大或缩小,以达到证明不等式的方法。放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:舍掉(或加进)一些项;在分式中放大或缩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东南方职业学院《高尔夫技术实践》2023-2024学年第一学期期末试卷
- 农产品加工业项目风险分析和评估报告
- 广东司法警官职业学院《中医全科医学概论(含整合医学概论)》2023-2024学年第二学期期末试卷
- 抚顺师范高等专科学校《小球类(乒乓球)》2023-2024学年第二学期期末试卷
- 北京邮电大学《快题专题训练》2023-2024学年第二学期期末试卷
- 广东省深圳实验校2025届初三下期第一次月考物理试题试卷含解析
- 泉州工程职业技术学院《建筑结构试验》2023-2024学年第二学期期末试卷
- 北京市海淀区2024-2025 学年第二学期期中练习(一模)数学试题(含答案)
- 2025年加工承揽合同范本示例
- 2025网站开发合同书范本
- 银行存款日记账课件
- 2023年保康九鼎融资担保有限公司招聘笔试模拟试题及答案解析
- 2023高中学业水平合格性考试历史重点知识点归纳总结(复习必背)
- 导游人员管理法律制度课件
- 2022年江苏安东控股集团有限公司招聘笔试题库及答案解析
- 美国地图高清中文版
- 金属监督监理实施细则
- 正确认识汽车太阳膜课件
- 工程建筑给排水外文文献翻译1
- 曲线上梁的平分中矢坐标计算方法解读
- DB4201∕T 646-2021 轨道交通工程运营期结构监测技术规程
评论
0/150
提交评论